The Journal of Systems & Software 184 (2022) 111108

Contents lists available at ScienceDirect

SOFTWARE
The Journal of Systems & Software

-

journal homepage: www.elsevier.com/locate/jss

Precise Learning of Source Code Contextual Semantics via Hierarchical ®
Dependence Structure and Graph Attention Networks™ e
Zhehao Zhao?, Bo Yang """, Ge Li?, Huai Liu ¢, Zhi Jin "

2 Key Laboratory of High Confidence Software Technologies, Peking University, Beijing 100871, China
b School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
¢ Department of Computing Technologies, Swinburne University of Technology, Hawthorn VIC 3122, Australia

ARTICLE INFO ABSTRACT

Article history:

Received 8 March 2021

Received in revised form 6 September 2021
Accepted 25 September 2021

Available online 19 October 2021

Deep learning is being used extensively in a variety of software engineering tasks, e.g., program
classification and defect prediction. Although the technique eliminates the required process of feature
engineering, the construction of source code model significantly affects the performance on those
tasks. Most recent works was mainly focused on complementing AST-based source code models by
introducing contextual dependencies extracted from CFG. However, all of them pay little attention to
the representation of basic blocks, which are the basis of contextual dependencies.

In this paper, we integrated AST and CFG and proposed a novel source code model embedded
with hierarchical dependencies. Based on that, we also designed a neural network that depends on
the graph attention mechanism. Specifically, we introduced the syntactic structural of the basic block,
i.e., its corresponding AST, in source code model to provide sufficient information and fill the gap. We
have evaluated this model on three practical software engineering tasks and compared it with other
state-of-the-art methods. The results show that our model can significantly improve the performance.
For example, compared to the best performing baseline, our model reduces the scale of parameters

Keywords:

Graph neural network
Program analysis
Deep learning
Abstract syntax Tree
Control flow graph

by 50% and achieves 4% improvement on accuracy on program classification task.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Recently, deep learning has been increasingly applied into
program analysis tasks, such as program classification (Wang and
Su, 2019; Ott et al.,, 2018; Frantzeskou et al., 2008), software
defect prediction (Wang et al, 2016; Tantithamthavorn et al,,
2016), and code summarization (Hu et al., 2018; Yao et al., 2019;
LeClair et al., 2019). However, the performance on these tasks
heavily depends on the choice of source code model, which can
be divided into three types: abstract syntax tree- (AST-) based,
control flow graph- (CFG-) based and the hybrid model of these
two. Moreover, depending on the structure of AST adopted during
analysis, AST-based source code model can be further divided
to the whole AST (Mou et al., 2016; White et al., 2016; Dam
et al., 2019) or partial AST (Zhang et al., 2019; Alon et al., 2019,
2018a). The syntactic structure within AST can illustrate all the
information of source code, especially the subtle changes on it.
However, the contextual dependencies are implicit in AST and

* Editor: Raffaela Mirandola.
* Corresponding authors.
E-mail addresses: zhaozhehao@pku.edu.cn (Z. Zhao), yangbo@bjfu.edu.cn
(B. Yang), lige@pku.edu.cn (G. Li), hliu@swin.edu.au (H. Liu), zhijin@pku.edu.cn
(Z. Jin).

https://doi.org/10.1016/j.jss.2021.111108
0164-1212/© 2021 Elsevier Inc. All rights reserved.

cannot be extracted and learnt effectively. In contrast, the CFG-
based source code model (Phan et al., 2018; Tufano et al., 2018)
is good at providing contextual dependencies, which can be learnt
effectively by graph neural networks. Nevertheless, CFG is unef-
fective to represent the information of statements located in the
basic blocks. Therefore, some researches proposed methodologies
to embed the contextual dependencies from CFG into AST (Alla-
manis et al., 2017; Li et al., 2019; Alon et al., 2018b). Such a design
idea of the hybrid method still take AST as the core part of the
source code model. It would add the contextual dependencies as
additional edges (Allamanis et al., 2017) to AST or as assistant
features (Li et al., 2019). However, the basic blocks, which are
the basis of contextual dependencies, are paid little attention by
the existing methodologies. To mine the contextual dependencies
effectively, we argue that the features of basic blocks should be
prioritized. Fig. 1 shows our motivational example. These two
code segments come from the PROMISE dataset used in our study.
The defect in Fig. 1(a) is that returning a null value on line 7
will cause a NullPointerException, and the corresponding fix is to
return a Field type array of length O here. After analyzing this
example, we have the following observations.

Observation 1: This defect depends on the actual execution
path. As shown in Fig. 1(a), the defect is triggered only if the
condition on line 6 is met. However, if the caller of the getFields

Z. Zhao, B. Yang, G. Li et al.

class Document {

public final Field[] getFields(String name){
List result = new ArrayList();

if (result.size() == 0)
return null;

(a) The defect version of lucene-2.2

The Journal of Systems & Software 184 (2022) 111108

class Document {
private final static Field[] NO_FIELDS = new Field[0];
public final Field[] getFields(String name) {
List result = new ArrayList();

if (result.size() == 0)
return NO_FIELDS;

(b) The fixed version of lucene-2.4

Fig. 1. A motivating example from PROMISE dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

function properly handles caught exceptions, this defect will not
be triggered. Thus, a reasonable source code model should reflect
the execution path. Furthermore, since a large number of invoca-
tions to getFileds are outside from the Document class, the source
code model should not be limited to a certain granularity.

Observation 2: These two source codes differ slightly but with
total different semantics. As shown in Fig. 1, the difference of
these two source codes is a choice between returning an identifier
NO_FIELDS or a null in line 7. The code in Fig. 1(b) does not cause
the exception because that NO_FIELDS refers to an object (see
line 2 of Fig. 1(b)). Thus, the difference of these two source code
is actually the difference between object and null. Moreover, for
the deep learning models with some textual features (e.g., Bag of
Words), the learning of these two words (null and NO_FIELDS) is
uneven, since null occurs more frequently than NO_FIELDS, which
would raise the difficulty for models to learn the real difference.

According to the Observation 1, CFG would intuitively become
the first choice of source code model, since CFG can show the
potential execution path and can be constructed on any granu-
larity. But there still exists the issue about how to represent the
basic blocks within the CFG. In the existing CFG-based works,
basic blocks are mainly represented by either line numbers (Li
et al.,, 2019) or Bag of Words (Zhong and Mei, 2019; Wang et al,,
2020). However, according to the Observation 2, these methods
only utilize the textual features, which significantly relies on the
frequency of occurrence. Thus they cannot effectively capture the
difference shown in Fig. 1 to distinguish NO_FIELDS and null. We
argue that a proper source code model should introduce semantic
differences (e.g., the difference between object and null) into the
deep learning models more than the textual distinctions.

Motivated by these observations, we propose a novel source
code model. Specifically, to overcome the limitation mentioned
in the Observations 1, we choose CFG with dataflow (ECFG),
which can reflect the actual execution paths, as the backbone of
the source code model. To address the Observations 2, we use
the block-level AST, i.e., each AST subtrees correspond to each
ECFG basic blocks. Take the source codes in Fig. 1 to illustrate
the benefit of such way: since NO_FIELDS represents an object
while null is just a keyword, the syntax rule for them are not
same, which brings different AST structures. To sum up, the whole
model can be divided into two levels. At the outer level, we use
the inter-procedure ECFG to express the dependencies between
the basic blocks. At the inner level, we choose AST to express the
structure of each basic block.

Our source code model has three advantages. First, benefiting
from the ECFG as the main body, the granularity of our source
code model can be flexibly adjusted. Second, also benefiting from
the ECFG, our source code model can show the potential exe-
cution path explicitly, thus the contextual dependencies can be
captured effectively by a graph neural network. Third, benefiting
from the substructure of AST, our source code model can have
a more informative representation of basic blocks, hence the
features within each basic blocks can be captured effectively by
a tree-based neural network.

Furthermore, we designed a Multi-Flow Graph Neural Net-
work (MFGNN) to extract features from our source code model.
The calculation of MFGNN can be divided into three steps. At
the first step, we obtain features named local features through
TBCNN (Mou et al, 2016) from the collection of AST-
substructures, which are corresponded to the basic blocks in
ECFG. At the second step, we extract features named contextual
features from ECFG, whose basic blocks has been filled with local
features. Since the ECFG is a directed graph with multi-typed
edges where we want to adopt attention mechanism, we did a
slightly modification on the original Graph Attention Network
(GAT). Specifically, the modified model supports directed graph
and multi-typed edges, we name it as Attention-based Graph
Network for Directed Graph (AGN4D), and apply it in the second
step. At the third step, we apply a fusion layer to coalesce these
features into hybrid features, which can be used for subsequent
tasks.

To be specific, this paper has the following three major con-
tributions:

e We propose a source code model that combines AST and
CFG with dataflow (ECFG). The source code model can re-
flect both contextual dependencies and syntactic structure,
which allows neural networks to learn richer program fea-
tures.

e We design a learning model to obtain contextual seman-
tics from the source code model, namely Multi-Flow Graph
Neural Network (MFGNN). MFGNN integrates an attention-
based graph learning layer evolves from GAT.

e MFGNN is implemented and evaluated on three typical
tasks, namely the program classification, software defect
prediction and code clone detection. The results show that
MFGNN can extract richer program features than the state-
of-the-art methods, and hence greatly improve the perfor-
mance of these tasks.

The remainder of this paper is organized as follows: Section 2
introduces the background of our work. Section 3 describes the
new source code model and MFGNN. We report our experimental
studies and results in Sections 4 and 5, respectively. The related
work is discussed in Section 6. Finally, we conclude this paper in
Section 7.

2. Background

In this section, we would introduce some basic concepts and
terms that are used in this paper.

2.1. Program representation

To represent a piece of program, there are several ways: token
sequences, AST, CFG (Tufano et al.,, 2018). Among all of them, AST
and CFG are adopted most widely, thus we would introduce both
of them in this section.

Z. Zhao, B. Yang, G. Li et al.

2.1.1. Abstract Syntax Tree

Abstract Syntax Tree (AST) is a tree representation of the
abstract syntactic structure of source code written in a pro-
gramming language (Mou et al., 2016). Each node on the AST
represents a nonterminal symbol in the syntax rules of the pro-
gramming language. Being a near-source-level program graph
structure, AST can represent the syntactic information of pro-
grams in a simple way, which makes AST widely used in a variety
of software engineering tasks (Mou et al., 2016; Allamanis et al.,
2017; Dam et al., 2019; Zhang et al., 2019; Wang et al., 2016; Alon
et al,, 2019, 2018a).

2.1.2. Control Flow Graph

Control Flow Graph (CFG) is a directed graph in which each
node (namely basic block) represents a set of sequentially exe-
cuted instruction sequences, and the edges represent control flow
paths. CFG is mostly used in static analysis and compiler applica-
tions, as it can accurately represent the flow inside a program. For
example, through graph reachability analysis, CFG can help locate
inaccessible code in programs, and find syntax structures such
as loops. As a source code model for deep learning, CFG’s edges
are usually considered to represent the contextual dependencies,
which have a significant impact on the performance of software
engineering tasks (Li et al., 2019; Fang et al., 2020; Allamanis
et al,, 2017).

2.2. Graph neural networks

Graph is a generic data structure to effectively abstract objects
and their connections (Zhou et al., 2018). It has been widely used
across multiple domains, such as social networks (Hamilton et al.,
2017), chemical interaction (Fout et al., 2017) and knowledge
modeling (Hamaguchi et al., 2017).

Graph Neural Networks (GNNs) are methods used to mine the
information within a graph and obtain the embedding vector of
the graph under a learning model. GNNs are mostly based on the
message-passing mechanism, and consist of two functions: the
Message function and the Aggregate function (Zhou et al., 2018).
The Message function is used to transform the original vector of
nodes to obtain the hidden vector; and the Aggregate function is
used to aggregate the transformed vectors of a node’s adjacency
nodes and obtain an embedding vector of the node.

The Message function is generally represented using a param-
eter W € RFFF' Let X = {x1,%2,..., %}, % € RF be the initial
features of nodes, and H = {h{, hy,..., hy}, h; € RF be the
transformed features of nodes. Then, the Message function can
be defined as:

h; = Message(x;) = Wkx;,

where F represents the initial dimension of nodes’ features, and
F’ represents the transformed dimension of nodes’ features.

Different GNNs often vary in the Aggregate functions. For ex-
ample, GCN (Bruna et al., 2014) uses summation as the Aggregate
function, which is defined as follows.

Ni
h; = Aggregate(h, N;) = Zhi’
i

where A is the collection of adjacency nodes of i.

GAT (Velickovi¢ et al., 2017) uses the self-attention mecha-
nism as the Aggregate function. GAT first calculates self-attention
weights for all edges in the graph, as defined below:

exp(LeakyReLU(a(Wh; || Wh;)))
o = ,
U7 Siensexp(LeakyReLU(a(Wh; || Why)))

where | is the concatenation operation and a : RF x RF' — Ris
the shared attention mechanism.

The Journal of Systems & Software 184 (2022) 111108

GAT then linearly combines the transformed features of the
neighboring nodes according to the attention weights, which is
defined as:

Ni
= o) azhy)
J
where ¢ is a nonlinearity function.

3. Approach

In this section, we would introduce our source code model and
the learning model named MFGNN.

3.1. Constructing graph through combining ECFG and AST

The combination of ECFG and AST can be considered as a
type of program dependency graph. The backbone of the graph
is an inter-procedural CFG. A CFG G = (B, E) of the program is a
directed graph, where B is a collection of basic blocks and E con-
tains all control flow relationships. We choose three-address code
(e.g., LLVM IR for C/C++ and Jimple for Java) as the intermedi-
ate representation when generating CFG by analysis frameworks
(e.g., Clang for C/C++ and Soot for Java).

From the motivating example (see Section 1), we can con-
clude that a precise modeling for basic block is essential for
the following analysis. Therefore, we choose AST to model basic
blocks as its nature of expressing syntactic structures and code
information. To further enrich the information in the AST, we
introduce the data types of variables to the subtrees of AST, which
inherently lacks of such information and corresponds to variable
usage (e.g., DeclRefExpr node in Clang). Specifically, for the
basic data type, we directly add it as a leaf node of the variable
node. For user-defined classes, we refer to the method mentioned
in Cvitkovic et al. (2018), and separate these classes according
to the Camel-Case naming. For type conversion statements, we
process both the original type and the target type according to
the above method and then add them into the AST as a subtree
of the type conversion node. Another aspect we need to consider
is the constants. To handle different constants, we disassemble
the constant value bitwise (e.g., The constant nodes 456 will be
disassembled to three nodes, represent 4, 5, 6,respectively.).

To address the lack of dataflow dependency in both AST and
CFG, in addition to the control flow, call flow, and exception flow
relationships included in the CFG, we also introduce data flow
relationship into our graph. Specifically, dataflow relationship
comes from the intra-procedural dataflow analysis. By traversing
the CFG, we have built two collections of variables: define stores
variables defined in the block and use stores variables used in the
block. The dataflow relationship between basic blocks is obtained
by reaching definition analysis later. Then we divide the edges
of control flow into four categories according to their function-
alities: sequential execution, conditional true branch, conditional
false branch and switch branches. Different categories of flow
relationship are labeled distinctly. Overall, there are seven types
of edges in our source code model.

The final graph of the motivating example is shown in Fig. 2.
We can observe that the red and green blocks of the two snippets
respectively containing different AST, representing the great dif-
ferences in local features between blocks. For the correct version
(Fig. 1(b)), the AST of the green block indicates that a static field
of that class is returned. For the faulty version (Fig. 1(a)), the AST
of the red block indicates that a null value is returned. This slight
textual difference, NO_FIELDS vs. null, can be easily learnt with
the help of a tree-based neural network due to the significant
difference in the AST. The control flow and the dataflow edges

Z. Zhao, B. Yang, G. Li et al.

P
Local
v LN

DefStmt

~
NewExpr
PAR N

javautil List

java util

ArrayList

The Journal of Systems & Software 184 (2022) 111108

[
T

F — v
Local
LN

javautil List

Invoke =%

BOp
P N
Const
N VAR
Method 0 int
1

int

J

ReturnOp
1
ArrayRef
+
StaticFieldRef
PR TN
Org ~ apache lucene document Field

|
]

(a) correct version

DefStmt
b ~
Local NewExpr - -
LN LN :
javautilList java util ArrayList !
1
1
1
]
1
I
]
BOp !
1
PR T !
Invoke == Const :
F— v N LN k---
Local Method 0 int
v 4N +
javautil List int
T
ReturnOp
4
NULL

(b) faulty version

Fig. 2. The comparison of the motivating example using the combination of CFG and AST. Black edges for sequential execute, orange edges for conditional true
branch and fuchsia edges for the false branch. The dashed-purple edges are dataflow edges.. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

(i.e., dashed-purple edges) jointly describe the use of variables,
and the conditional true edges (i.e., orange edges) indicate the
branch and precondition of the faulty block. Combined with the
difference in local features between green and red blocks, our
source code model leads to different context features.

3.2. Multi-Flow Graph Neural Network

We design a neural network model to obtain the features
of our representation model and name it as Multi-Flow Graph
Neural Network (MFGNN). Fig. 3 shows the overall structure of
the model. The learning process can be divided into three stages:
local features embedding stage, contextual features embedding
stage and fusion stage. In the first stage, the tree-based network is
used to learn the local features for each block in B. In the second
stage, attention-based graph neural network for directed graph
(AGN4D) is used to learn contextual features in the combined
graphs based on local features of each block. In the final stage,
a fusion layer is used to fuse local features and contextual features,
and the contextual semantics are obtained.

3.2.1. Local features embedding

We use Tree-based Convolutional Neural Network (TBCNN) to
obtain the local features in each block. The original TBCNN is not
suitable for our extended AST because of the additional contents
on the leaf nodes of the extended AST. The learning process of
the original TBCNN ignores the fact that the deeper the node
in the AST, the richer the information. Therefore, we adjust the
preset weights of TBCNN to increase the weight of deeper nodes
in the convolution window of TBCNN, i.e., the nodes with richer
information would have a more significant impact on the training
process of the model. The formulas of the weights are shown as
follows:

t di—1 ! tpi_]

e Y T — i1 —nh, 1
M= g T iy ;i (1= n;) (1)

where d; is the depth of node i in the entire tree, dy is the depth
of entire tree, p; is the position of the node i in subtree, and n is
the total number of i's siblings.

The importance of local features is two-fold: first, as the fea-
tures of each block, local features is the input for AGN4D (see
Section 3.2.2) for learning contextual features; second, local fea-
tures play an critical role within the final features, so we pass local
features to the fusion layer (see Section 3.2.3) directly.

3.2.2. Contextual features embedding

Our source code model can be considered as a directed graph
with edge types. Therefore, based on GAT (see Section 2.2), we
design a network layer nested in MFGNN, named Attention-based
Graph Neural Network for Directed Graph (AGN4D), which can
handle directed graph and multiple types of edges. With AGN4D,
we can extract contextual features from the combination graph.

Suppose G is an instance of the combined graph and Rg is the
reverse graph of G. Let X = {xq, x2, ..., X,} represent local features
of the blocks in the set B obtained in the previous stage. Let the
initial graph embedding H® = {h9, h9, ..., hl} where H® = X, the
graph embedding update process of G is as follows:

k., =MSG,(h") ki, = MSG.(h")

o, = AgE5 (Ko, s (o, [V € N1

hi, = Aggl(k. . (k! v e N9
hly=hb, +h, +h"

(2)

, where A is the collection of successors of block u in original
graph ¢ and AVJR9 for reverse graph RG. MSGf) represents the MSG
function of the original graph at layer [and MSG! for the reverse
graph. Aggé refers to the Agg function of the original graph at layer
I and Agg! for the reverse graph. Note that MSG function and Agg
function do not share parameters between different layers.
After obtaining the graph embedding from the two graphs,
the graph embedding of previous layer and current layer are

Z. Zhao, B. Yang, G. Li et al.

TN

Ingoing
if(a<b) Edges
c=a+b
—
else Outgoing
c=a-b Edges

Source Code

our source code model

The Journal of Systems & Software 184 (2022) 111108

Local Features II

classifier

max-pooling

Contextual
Features

Fig. 3. MFGNN structure.

connected by a skip-connection to obtain the final graph repre-
sentation of this layer.

The MSG function needs to transform the graph embedding
from the previous layer to obtain the features of for this layer,
which is parameterized by a weight matrix W,ﬁey which is defined
as follows:

ki, = MSG/(h} ") = Wy, b (3)

The Agg function aggregates features in successor blocks and
current block. We add support for multiple types of edges to the
self-attention mechanism of GAT, defined as follows:

=P K +PYK (v f) €E

elU srcu
alv = softmax({LeakyReLU(e’v)Iv € M})
(4)
h = Agg'(k, (K jve M) =0 (Z aLlc’v>
veNy

, where f stands for the flow type of the edge from u to wv.
Attention mechanism is parameterized by P! and Pé‘sft, which
indicates the importance of the f-type flow dependency between
blocks u and v.

We pass the h;, of the last layer of AGN4D to the fusion layer
as contextual features.

3.2.3. Fusion layer

The main functionality of the fusion layer is to fuse local
features and contextual features into the hybrid features of the pro-
gram. In our design, the fusion layer first adds local features and
contextual features, then gets the fixed size program feature vector
through dynamic pooling. In practice, we choose max-pooling
as a pooling function. Finally, we train a classifier (i.e., Logistic
Regression (LR)) for classification tasks.

4. Evaluation

We conducted a series of experiments to evaluate MFGNN
with comparison against some existing state-of-art methods. Our
experiments run on a 4 T k40c GPUs machine with Xeon E5-2310
32 GB RAM.

4.1. Research questions

To evaluate the effectiveness of our source code model and
MFGNN, and compare them with several state-of-the-art methods
on some particularly tasks, our experiments were particularly
designed to answer the following five research questions:

RQ1 How is the performance of MFGNN in classifying datasets
that consists of programs with small textual but large se-
mantic differences?

RQ2 How is the performance of MFGNN in Within-Project Defect
Prediction (WPDP) task compared with the state-of-the-art
methods?

RQ3 How is the performance of MFGNN in Cross-Project Defect
Prediction (CPDP) task compared with the state-of-the-art
methods?

RQ4 How is the performance of MFGNN in Functional Code-Clone
Detection (CCD) task compared with the state-of-the-art
methods?

RQ5 To what extent do different components in MFGNN influ-
ence the performance?

4.2. Datasets

For RQ1 and RQ5, we selected two datasets as the objects of
our experiments, namely CodeChef and Codeforces. The Codechef
dataset is collected by Phan et al. (2018) and composed of so-
lutions, written in C/C++, which are submitted by users for four
challenges, namely SUB, MNMX, FLOW, and SUM. However, these
four challenges are trivial (e.g., FLOW only requires an implemen-
tation of the GCD algorithm), which cannot evaluate the effective-
ness of our tool thoroughly. Thus, we further manually collected
a dataset, namely Codeforces, from a public website.! Specifically,
it consists of solutions submitted by users for five challenges,
ie, 1062C2, 721C3, 731C* 742C° and 822C°. The challenges
involved in the Codeforces dataset covers a variety of algorithms
that are more complicated (e.g., disjoint-union sets, Dijkstra and
greedy algorithm). Specifically, the detailed description of these
challenges are described as follows:

e 1062C: Given a binary-valued string and a list of intervals.,
for each interval, the frequencies of each value in the inter-
val is used to calculate a formula. A prefix sum (and product)
algorithm is required to solve this challenge.

e 721C: Given a weighted directed graph, the shortest path
is found between two specific nodes. Dijkstra algorithm is
required to solve this challenge.

e 731C: Given an undirected graph, the number of connected
components in the graph is counted. A disjoint-union sets is
required to solve this challenge.

e 742C: Given a directed graph, the least common multi-
plier (LCM) is calculated for the lengths of all the circles in
the graph. To solve this challenge correctly, circle finding
algorithm and LCM algorithm are required.

https://codeforces.com.
https://www.codeforces.com/problemset/problem/1062/C.

w N

https://www.codeforces.com/problemset/problem/721/C.
/C.
/C.
https://[www.codeforces.com/problemset/problem/822/C.

[S RN

https://www.codeforces.com/problemset/problem/742

(<)}

/

/
https://www.codeforces.com/problemset/problem/731

/

/

Z. Zhao, B. Yang, G. Li et al.

The Journal of Systems & Software 184 (2022) 111108

Table 1

The statistics of program classification dataset for RQ1 and RQ5.
Index CodeChef Codeforces
Problems SUB FLOW MNMX SUM 1062C 721C 731C 742C 822C
Instance Count 2313 5487 9693 11666 9136 16084 10170 6971 17379
Avg. Line of Code 30 25 25 36 45 65 55 52 55
Avg. Branches Count 9 8 8 12 12 10 21 15 18
Avg. Operators Count 25 15 15 35 40 40 29 30 39

e 822C: Given a collection of weighted intervals, a subset of Table 2

the minimum weight sum is found to satisfy some condi-
tions (e.g., no intersect between intervals). A greedy algo-
rithm is required to solve this challenge.

For each program in both datasets, there is a label to indicate
the running result of the corresponding program. The meaning of
labels is detailed in the following:

e Accepted (AC): The program is able to pass all test cases;

e Wrong Answer (WA): The program can execute normally
but output incorrect results;

o Runtime Error (RE): The program cannot execute normally
on some test cases, which are generally due to illegal mem-
ory access or operation error, e.g., divided by zero;

o Time Limited Exceeded (TLE): The program does not re-
sponse within the time limits;

e Memory Limited Exceeded (MLE): The consumed resource,
i.e.,, memory, exceed the requirement.

Except for the AC, different running results correspond to
different defects in source code. For example, the source code
with the TLE often contains redundant steps or dead loops, while
the source code with the WA often contains functional errors.
Therefore, we argue that a reasonable source code model should
reflect these differences and is able to classify them effectively.

Additionally, we conducted a pre-processing on both datasets.
First, we removed the source code that are irrelevant to the cor-
responding challenge. Second, we removed the duplicated ones
from datasets. Third, to avoid mislabeling, we generated some
test cases according to the requirements of the corresponding
challenge. Then, we re-ran the source code and re-labeled them
that were mis-labeled. Finally, for each dataset of challenges, we
split each of them into training set, validation set and test set in
3:1:1 ratio. Table 1 shows some metrics of the final datasets.

For RQ2 and RQ3, we have selected another well-known public
dataset, namely PROMISE. The reason is that it has been widely
used for software defect prediction (Wang et al, 2016; Dam
et al., 2019; Chen et al,, 2020), and it consists of several well-
known open-source Java projects. Except for the jedit (Version
3.2), which cannot be compiled properly, the remaining 10 Java
projects and their corresponding versions that we selected are
identical to a previous work (Wang et al.,, 2016) for comparison.
Finally, 1395 source code files, which cannot be processed suc-
cessfully by our Soot-based generator, were removed from the
dataset. The statistical description of the final dataset for RQ2 and
RQ3 is shown in Table 2.

For the remaining research question, i.e., RQ4, we have se-
lected a public dataset, namely OJClone, which has been adopted
by several works (Zhang et al,, 2019; Fang et al., 2020). It was
collected from an online program judgement system for C/C++
source code. Specifically, OJClone contains 15 program tasks, and
each of them is composed of 500 source code files submitted
by users. For the same task, different users’ source codes could
pass the test and got AC verdict, and thus can be considered as
functional code clone. In other words, for each source code pair
in the dataset, it will be labeled by either 0 for non-cloned pair
or 1 for cloned pair. Similarly to the classifying task, we shuffled
and split the dataset into training, validation and testing in 3:1:1
ratio.

The statistics of PROMISE dataset, which is specialized for RQ2 and RQ3.

App Ver Mean files Mean defective Defective rate
lucene 3 247 140 56.7
synapse 3 188 52 27.7
Xerces 2 295 54 18.3
xalan 2 665 237 35.6
camel 3 700 165 23.6
log4j 2 70 29 414
ant 3 422 95 225
jedit 3 311 67 215
poi 3 328 219 66.8
ivy 2 253 26 10.3

4.3. Experiment settings

In this section, we present the setup of each RQ’s experi-
ment, involving detailed settings about our method, the choices
of baseline methods and comparison metrics.

4.3.1. Settings for MFGNN

The input of MFGNN consists of four parts: (1) a collection
of AST nodes (represented by one-hot vectors); (2) a collection
of AST’s substructures; (3) a mapping graph (i.e., mapping the
substructure to corresponding basic block); and (4) an ECFG As
for the hyper-parameters, the embedding dimension of the AST
nodes is set as 50. And the dimension of AGN4D, which is stacked
with three layers, was set as 200. MFGNN was optimized by
Adamax, and trained for 200 epochs. During the training, we
selected the parameters (i.e., weights of MFGNN) that performed
best on the validation set, and evaluated them on the test set.

4.3.2. Settings for baselines

For RQI1. To illustrate the effectiveness of MFGNN, we choose
three other well-known groups of representative methods for
comparison:

SVM-based approaches We chose SVM-based approaches to
demonstrate that both datasets, i.e., CodeChef and Codeforces,
do consist of source code with small textual but large semantic
distinctions. In terms of classifying source code files according
to their textual features, the more indistinguishable the source
code are, the worse SVM-based methods would perform. To show
the textual distinguishability of our dataset, we choose TF-IDF
and BoW features as the textual features, and feed them into
RBF-kernel SVM.

AST-based approaches To illustrate the advantages of our
source code model over AST in program classification, we chose
several typical AST-based approaches. Specifically, according to
AST granularity, we can divide the AST-based approaches into two
categories. One uses the entire AST of source code, like represen-
tative methods: TBCNN (Mou et al., 2016) and Tree-LSTM (Niepert
et al,, 2016). The other one splits AST according to code frag-
ments and is known as ASTNN (Zhang et al., 2019). Moreover,
code2vec (Alon et al., 2019) adopts paths in AST to represent
the source code and learns the features contained in the paths
through a network based on attention mechanisms. Similarly,
code2seq (Alon et al., 2018a) uses the same paths as code2vec

Z. Zhao, B. Yang, G. Li et al.

but extracts the features by the seq2seq model (Sutskever et al.,
2014).

For the settings of AST-based approaches, the AST used in
TreeLSTM, TBCNN and ASTNN is generated by Clang, but the
AST paths used by code2vec and code2seq are generated by
ASTMiner.” For code2vec, the embedding dimension is set to 400;
For code2seq, the embedding dimension is set to 128 and the
decoder dimension is set to 320; The hidden dimension of the
other methods is set to 200.

Graph-based approaches Some recent studies focused on rep-
resenting a program as a graph and adopting a graph-based
learning method to extract dependency features from the graph.
DGCNN chooses CFG as the source code model and obtains fea-
tures with GCN (Phan et al., 2018). ContextGraph (CtxG) inserts
extra edges (e.g., dataflow edges) into the original AST, and ex-
tracts the features with GGNN (Li et al., 2015). For the settings of
graph-based approaches, the number of steps of GGNN is set to
3, and the hidden size of all graph-based approaches was set to
200.

For RQ2. We evaluated the performance of MFGNN on Within-
Project Defect Prediction (WPDP) task. According to previous
studies on defect prediction task (Wang et al., 2016; Dam et al.,
2019), we decided to use the same strategy, i.e., training by the
earlier version and predicting on the later version. We com-
pared MFGNN with several typical WPDP methods that can be
divided into two types according to their adopted source code
models. Some of defect prediction technologies used the fea-
tures of the PROMISE with traditional machine learning meth-
ods (Menzies et al., 2007, 2010), including Adaboost, Multi-Layer
Perception (MLP) and Random Forest (RF). The others utilize AST-
based features, and representative methods (e.g., DBN Wang et al.,
2016 and TreeLSTM Dam et al., 2019). Specifically, DBN obtained
the semantic features from AST. We classified these features
with three classifiers: Naive-Bayes (DBNpg), Logistic Regression
(DBNyg) and Decision Tree (DBNpr). As for TreeLSTM, after the AST
was parsed by JavaParser,® it would take the entire AST as input
for prediction. Additionally, we chose another two well-known
methods: DTL-DP (Chen et al., 2020) and BugContext (Li et al.,
2019). The former one visualized the source code file (or binary
file) as an image, and obtained the defect features with AlexNet,
while the later one acquired contextual dependencies from CFG
and DFG, then introduced them into path-based AST features.

For RQ3. We conducted Cross-Project Defect Prediction (CPDP)
experiments to show the performance of MFGNN. Following the
previous studies (Wang et al,, 2016; Dam et al., 2019), we orga-
nized ten groups of experiments, trained models on the source
project and predicted on the target project. For the target project,
according to transfer learning methods (Nam et al., 2013), we
first randomly selected 30% of the data to fine-tune a LR-based
classifier and then predicted the rest 70%. Except for DBN, which
was replaced by its CPDP-variant: DBN-CP (Wang et al., 2016), we
chose the same set of baseline methods as RQ2. Additionally, we
added two transfer learning-based methods, namely TCA+ (Nam
et al, 2013) and TNB (Maying et al, 2012), which take the
PROMISE feature as same as the machine learning methods.

For RQ4. We conducted Functional Code-Clone Detection (CCD)
experiments to demonstrate the distinguishability of semantics
obtained by MFGNN. Let the features of the two source code
files within a pair that are obtained from MFGNN be v; and v,
respectively. The difference can be defined as d = |v; — vy|.
Finally, we use a LR-based classifier (i.e.,, y = sigmoid(W,d +

7 https://github.com/JetBrains-Research/astminer.
8 https://javaparser.org.

The Journal of Systems & Software 184 (2022) 111108

b,)) to determine whether the code pairs are similar based on
the vector d. We compared the performance of MFGNN with
several state-of-the-art models that are widely used on CCD
task, including RAE+ (Ferrante et al., 1987), Deckard (Jiang et al.,
2007), CDLH (Wei and Li, 2017), ASTNN (Zhang et al., 2019),
DeepSim (Zhao and Huang, 2018), and FCDetect (Fang et al,
2020).

For RQ5. We carried out some ablation studies. Our approach
can be divided into two parts, a source code model based on
ECFG and a learning model with the AGN4D layer. Firstly, we
explored the impact of different choices in the design of our
source code model, which has four options: (1) representing basic
blocks with AST (A) or BoW features (B); (2) including control
flow edges (C) or not; (3) including dataflow edges (D) or not; and
(4) embedding the source code model with multi-typed edge (M)
or with single-typed edge (S). We have designed four variants
based on the combination of different options.

e AST+CFG+Single: The main body of this model is CFG with
no distinction between control flow types, and its basic
blocks are represented using ASTs.

e AST+DFG+Single: The main body of this model is DFG, with
only one type of flow, and its basic blocks are represented
using ASTs.

e AST+CFG+Multi: The main body of this model is a CFG that
distinguishes between different control flows, and its basic
blocks are represented using ASTs.

e BoW+CFG+DFG+Multi: The main body of this model is a
CFG that contains the dataflows and distinguishes between
different types of flows. Its basic blocks are represented
using BoW.

Secondly, we explored the impact of different graph learning
methods. We replaced the AGN4D layer with graph convolution
network (GCN) and gated-graph neural network (GGNN), respec-
tively. Additionally, we compared across the different options in
AGN4D, i.e., summation and concatenation, to synthesize graph
features (see Eq. (2)) on the same source code model.

4.3.3. Metrics

For RQ1 and RQ5, we chose the accuracy and macro-F1 (Liu
et al,, 2009) to evaluate the prediction result on test sets. As-
suming a task has K classes, the accuracy is defined as follow:

K
1 ITP;
accuracy = Ll:}\; -, (5)

where TP; refers to true positive of class i, and N is the total
number of samples.

For a binary classification task, the F1-score (F1) is defined as
follow:

2 x precision * recall
F1-score = — (6)
precision + recall

, Where precision = TPTFP and recall = PN TP denotes the true
positive, FP represents the false positive, and FN refers to false
negative.

A multi-label classification task can be considered as several
binary classification tasks on different labels. Based on that, as-
suming the task has K classes, the macro-F1 can be defined as
follow:

P

K
1
Macro-F1 = X 2]: F1-score;. (7)
1=

For RQ2 and RQ3, in addition to the F1 on the buggy class, we
also used the metric AUC (Area Under the receiver operating char-
acteristics Curve) (Dam et al., 2019) to evaluate the performance

Z. Zhao, B. Yang, G. Li et al.

of defect prediction. Specifically, AUC refers to the probability of
a classifier ranking a randomly selected positive sample higher
than a randomly selected negative sample. Intuitively speaking, a
higher value of AUC implies a better performance.

For RQ4, following the evaluation metrics of previous works
(Zhang et al,, 2019; Fang et al., 2020), we choose precision (P),
recall (R) and F1 to measure the performance of the selected
models on CCD task.

5. Results

In this section, we show the results of the experiments, and
compare the performance of different methods.

5.1. Answer to RQ1

Table 3 illustrates the results related to RQ1, and the best per-
formance are highlighted in bold. In column 2, we list the size of
the corresponding model except for the SVM-based approaches,
whose size is neglectable. According to these experimental re-
sults, we have the following insights:

The dataset does consist of source code with a minimal
textual difference. As we can see, SVM-based methods did not
play well in our experiments, which is reflected by their cor-
responding F1 values. This indicates that the source codes with
different labels in our dataset cannot be effectively distinguished
by textual features. In other words, it proves that the textual
differences among the source codes in out dataset are too small
to be distinguished effectively.

Compared to AST-based approaches, MFGNN achieves a bet-
ter performance with fewer parameters. Compared to the best
method, i.e., TreeLSTM, among AST-based approaches, MFGNN
reduces the model parameters by up to 50%, while achieving
4.0% and 6.8% improvements on accuracy and F1, respectively.
Additionally, we can observe that both of code2vec and code2seq
did not perform well. This is because both of them model the
source code by sampling the path of the AST, which can only
capture potential connections between code tokens (Jiang et al.,
2019). Program classification task, however, requires the identifi-
cation of the actual control flow and dataflow information of the
program execution, which cannot be achieved by their models.
On the contrary, our source code model can reflect the actual ex-
ecution path of the program with contextual information, which
can be better captured by the neural network.

MFGNN achieves a significant performance improvement
while adding a limited number of parameters compared with
the graph-based approaches. Compared to the best graph-based
approach, DGCNN, MFGNN only increases the number of param-
eters by 4 times, but achieves 5% and 8.1% improvement on
accuracy and F1, respectively. Similarly, compared with DGCNN,
which has the same scale of parameters as MFGNN, MFGNN
achieves 4.8% and 8.4% improvement on accuracy and F1, respec-
tively. This result illustrates that the performance of MFGNN has
little correlation with its number of parameters. The main dif-
ference between MFGNN and traditional graph-based methods is
two-fold. On one hand, the integration of multiple flow informa-
tion in the source code model clearly expresses the dependency
features of the program well. On the other hand, the attention
mechanism allows MFGNN to dynamically adjust the weights of
different types of flows, resulting in a better mining of the flow
features.

The Journal of Systems & Software 184 (2022) 111108
5.2. Answer to RQ2

Table 4 shows the performance of different approaches on
the within-project defect prediction (WPDP) task, and the best
performances are highlighted in bold. Due to the limitations of
Soot (e.g., throw exceptions on some data items), our dataset lost
a large number of entries in some projects, which resulted in
the distribution of the dataset we actually used differs from the
previous study (Wang et al., 2016). To ensure the fairness of the
comparison, we re-implemented the DBN methods and TreeLSTM
mentioned in Dam et al. (2019). We selected multiple groups of
parameters randomly, ran all methods multiple times and kept
the best result.

Compared with the state-of-art method, namely TreeLSTM,
MFGNN achieved 1.6% and 4.0% improvements on F1 and AUC,
respectively. Moreover, MFGNN was 5% and 29.6% higher in F1
and AUC, respectively, than DTLDP. Specifically, higher AUC often
means that the model has more confidence in the prediction re-
sults, and the main difference between MFGNN and these meth-
ods is the use of ECFG on the source code model allows MFGNN
to capture contextual dependencies.

Compared to the BugContext method, MFGNN improved 7.3%
and 18.7% in F1 and AUC, respectively. We think such a significant
improvement can be attributed to their structural difference,
which can be divided into three-fold. First, the representation of
basic blocks. According to the open-source implementation of the
BugContext, it only embeds line numbers into basic blocks, while
MFGNN uses AST to represent those basic blocks. Second, the pro-
cess of learning AST features. BugContext learns tree features by
sampling the paths of the tree, while TBCNN is adopted to learn
the features by MFGNN. Third, the process of learning graph.
MFGNN uses AGN4D to capture the dependency features in the
graph, while BugContext uses node2vec to learn the information
in the PDG. The biggest advantage of AGN4D over node2vec is the
introduction of an attention mechanism, which allows different
types of dependency features to be fused. In conclusion, the
hybrid features obtained by MFGNN could perform better on
WPDP task.

5.3. Answer to RQ3

The cross-project defect prediction (CPDP) task mentioned in
RQ3 mainly evaluates whether the contextual features learnt by
the model can be applied to different projects. To answer this
question, we compared our proposed method, MFGNN, with sev-
eral typical CPDP methods, and the results are shown in Table 5.
The best performance among all methods are marked in bold.
Depending on the type of input data, we can further divide the
performance into two types: the best performance among metric-
based methods is marked with underline and among source code
model-based methods is marked in 'lightgray .

Among all methods, MFGNN achieved the highest overall F1
and AUC. Compare to the best metric-based methods, MFGNN
outperformed 6.3% and 1.9% in F1 and AUC, respectively. Compare
to other source code model-based methods, MFGNN achieved
the highest F1 and AUC in most of the tasks. Interestingly, the
BugContext does not perform as well as its result on the WPDP
task (see Section 5.2). Compared with BugContext, the F1 and AUC
of MFGNN were improved by up to 27.6% and 15.8%, respectively.
We think the reason of improvement lies behind their difference
of using context-dependent information, which could be divided
into two-fold. On one side, BugContext uses dependency features
to assist AST features, while MFGNN does the opposite. Learning
program context-dependent features is critical for CPDP task, thus
such a design difference can lead to a discrepancy in performance.
On the other side, BugContext extracts features from CFG and

Z. Zhao, B. Yang, G. Li et al.

The Journal of Systems & Software 184 (2022) 111108

Table 3
Results on program classification task, the numbers in parentheses are the parameter sizes of methods.
Groups Methods SUB MNMX FLOW SUM 1062C 721C 731C 742C 822C Avg
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
syMm SYM&TE-IDF 347 129 480 162 566 18.1 384 139 510 136 387 112 429 120 600 150 562 144 474 141
SVM&BoW 545 415 686 525 80.0 608 599 526 557 215 426 226 554 33.1 669 262 568 166 600 364
TBCNN (0.5M) 672 652 746 692 753 660 638 624 630 399 537 471 656 529 669 388 589 489 654 545
TreeLSTM (40M) 66.1 641 760 695 768 684 663 659 669 477 560 506 69.1 531 700 412 60.7 502 67.5 567
AST ASTNN (0.9M) 614 589 703 631 743 624 627 624 636 466 499 443 612 500 646 326 550 423 626 514
code2vec (173M) 295 247 366 257 297 211 314 245 412 184 289 185 281 182 492 180 307 145 339 204
code2seq (61M) 359 169 504 169 517 300 319 213 514 136 360 151 430 139 523 173 565 145 455 17.7
DGCNN (0.4M) 648 645 746 677 838 709 69.1 674 643 428 542 496 614 470 703 441 562 445 665 554
Graph DGCNN (2.4M) 644 626 742 665 827 720 69.1 679 648 421 553 499 617 485 726 435 559 425 667 55.1
CtxG (4.9M) 648 620 740 680 749 639 649 646 591 420 511 453 590 478 650 368 564 433 632 526
MEFGNN (2.1M) 745 747 83.1 814 818 710 729 735 680 532 595 545 700 610 738 516 599 503 715 635
Table 4
The result of WPDP experiment on PROMISE.
Methods Adaboost MLP RF DBNpg DBN;z DBNpr Tree-LSTM DTLDP BugContext MFGNN
Project Tr T F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC
ant 15 16 378 684 320 725 362 705 43 815 407 807 43 511 297 497 453 228 31.1 444 331 725
1.6 17 522 694 514 716 491 741 532 693 517 79.0 228 506 442 608 355 500 451 447 537 755
camel 12 14 402 703 398 686 472 759 129 531 165 404 93 519 531 827 329 341 362 526 54.3 83.6
14 16 402 709 307 689 459 701 137 584 320 584 80 442 559 797 347 442 278 503 56.8 84.0
ivy 14 20 143 669 148 678 231 694 476 615 273 579 267 577 159 458 211 185 319 445 229 602
jedit 40 41 570 807 543 804 545 799 413 456 416 500 00 504 620 788 238 357 385 63.1 650 844
lucene 20 22 585 637 599 634 594 657 327 653 366 654 358 533 609 599 589 480 430 584 64.6 64.0
22 24 648 566 684 575 648 621 257 473 374 733 142 716 681 591 688 403 680 603 68.8 634
log4j 1.0 1.1 667 780 733 825 750 842 750 885 605 902 723 648 733 758 240 469 755 66.7 733 770
oi 15 25 773 726 784 721 733 743 85 458 84 654 134 409 816 758 819 595 797 621 83.1 784
p 25 30 546 502 684 522 587 556 280 764 270 786 89 787 739 695 777 719 652 583 733 69.2
wnapse 10 11 289 646 150 611 147 579 479 644 430 663 489 605 282 432 410 517 188 401 304 61.1
YRAPSE 41 12 403 612 441 644 400 668 415 691 415 501 359 665 503 578 544 437 424 550 50.3 65.6
xalan 24 25 329 621 219 597 279 591 191 51.1 308 582 106 554 345 639 504 438 174 519 331 587
xerces 12 13 296 626 242 603 257 579 241 535 324 640 333 645 294 607 148 294 94 515 309 742
Avg 464 665 451 669 464 682 317 621 352 652 230 575 507 642 443 427 420 536 529 715
DFG separately, while MFGNN combines them into the ECFG and
. + Non-cloned aat,
extracts features uniformly by AGN4D. doned S TP S
In conclusion, the contextual features obtained by MFGNN are e K :"‘u&’x‘i; o,
. . ¥ A TR
more generalized and are able to result in better performance on o BT NN :f:;{w:a*; datow
¥ a Ak aaat AL
the CPDP task. T i e MeashRi s e
oW FLSAT R
5.4. Answer to RQ4 v T T T N e e S LV Ve N
N A oo 2 Py e S R
ﬂ,;; i Y T AT R s ;fu‘*.‘,;:*;.i;.‘g*‘ A aty
. ¥y bt Ay An PRas ia
Table 6 illustrates the results related to RQ4, and the best jadis B ¥ e f‘af? Y
results are highlighted in bold. Compared with other methods, LR T TR A e yif
MFGNN achieved the highest recall and F1, as well as a relative % r » i
. P . \ﬁ"’ Vi v ‘;;? ¢‘
high precision. Interestingly, we could observe that FCDetect v . voa T %
plays well, which apply call graph as the source code model. How- ¥ % = s 2 ;j.‘" w
ever, we argue that MFGNN can capture the program context- "; ¥ LA I
. . . v, ¥
dependency features more effectively. The main difference be- v_: I N '
tween them is the graph learning mechanisms they adopted. L “‘*v;w“
Compared to the Graph2Vec adopted by FCDetect, MFGNN uses ” i
AGN4D based on the attention mechanism, and thus could ad-

just the weights of different types of dependency information.
Therefore, with the help of more context-dependency features,
MFGNN could identify program variants more effectively, leading
to higher recall and F1 scores.

Fig. 4 shows the absolute distances of features derived from
MFGNN for the data in the test set. We can observe that there is
a clear demarcation line between the red and blue dots. This illus-
trates the features obtained by MFGNN can effectively distinguish
source codes under the functional code-clone task. In conclusion,
MFGNN can improve the performance of distinguishing between
non-cloned and cloned source code pairs.

Fig. 4. t-SNE mapping of the absolute distances of the test set’s pairs’ features.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

5.5. Answer to RQ5

To answer this question, we have adjusted the default settings
in our original methodology and compared their performance on
the program classification task. The results are shown in Table 7,

Z. Zhao, B. Yang, G. Li et al.

The Journal of Systems & Software 184 (2022) 111108

Table 5

The result of CPDP experiment on PROMISE.
Source Target Adaboost MLP RF TCA+ TNB DBN-CP DTLDP BugContext MFGNN

FI AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

ant-1.6 camel-14 239 629 372 633 268 659 280 529 400 675 319 607 228 420 226 425 @ 363 653
jedit-4.1 camel-14 257 604 265 494 167 597 290 512 320 642 234 611 313 549 117 516 398 674
camel-14 ant-16 543 694 328 381 382 70.1 250 421 59.0 790 561 743 478 186 222 669 503 714
poi-3.0 ant-1.6 488 687 627 803 550 738 280 468 53.0 482 633 448 265 510 682 | 569 752
camel-14 jedit-4.1 348 577 132 302 376 711 500 638 530 762 323 591 384 367 452 702 415 642
log4j-1.1 jedit-4.1 577 786 561 721 566 785 180 357 62.0 484 674 399 620 380 498 | 57.8 788
jedit-4.1 log4j-1.1 263 634 00 132 129 849 610 618 710 843 378 611 596 491 316 242 57.1 679
lucene-2.2 log4j-1.1 641 741 604 920 708 823 520 609 630 797 452 538 465 417 532 624 545 63.1
lucene-22 xalan-2.5 636 574 685 609 617 611 580 548 450 530 572 610 378 544 432 489 674 666
xerces-1.3 xalan-2.5 384 507 628 590 218 560 590 539 570 535 268 469 649 402 236 557 635 611
xalan-2.5 lucene-22 465 548 747 640 516 597 640 631 540 579 564 605 745 507 654 548 643 566
log4j-1.1 lucene-2.2 493 623 378 579 550 608 600 556 540 631 527 558 764 561 629 500 702 63.1
xalan-2.5 xerces-1.3 354 559 00 378 393 647 230 395 310 496 324 575 157 434 344 624 | 500 743
ivy-2.0 xerces-1.3 125 642 00 338 200 527 450 667 370 603 366 596 294 513 321 532 | 47.8 717
xerces-1.3 ivy-2.0 346 711 395 797 355 701 300 689 340 772 305 572 113 545 253 678 | 374 795
synapse-12 ivy-2.0 333 743 511 787 347 745 240 625 380 821 296 620 220 182 407 719 390 789
ivy-1.4 synapse-1.1 9.4 661 209 356 34 632 450 614 51.0 700 97 519 157 541 94 374 427 578
poi-2.5 synapse-1.1 283 48.1 349 542 465 629 430 627 50 444 490 634 352 300 370 564 485 686
ivy-2.0 synapse-12 397 697 345 497 242 689 520 623 570 707 324 536 457 398 175 502 = 620 733
poi-3.0 synapse-1.2 563 699 558 660 538 562 560 67.6 430 628 495 623 294 340 498 552 @ 657 75.1
synapse-1.2 poi-3.0 577 741 517 593 272 700 720 616 710 756 485 595 739 565 662 567 | 814 822
ant-1.6 poi-3.0 470 685 472 532 378 702 380 339 650 797 435 660 333 564 447 416 = 81.1 843
Avg 403 646 395 558 37.6 672 436 559 489 684 399 599 407 441 376 545 @ 552 703

Table 6 AST is a better choice for node representation in our ex-

The results of ccd task on OJClone. periment settings. The results show that using AST as a node
Methods RAE+ Deckard CDLH ASTNN DeepSim FCDetect MFGNN representation improved the model’s performance significantly.
P 525 99 47 98.9 70 97 96.7 Even when the other settings in the approach were removed
R 683 5 73 927 83 95 96.3 (e.g., A+C+S which removed data flow edges and edge types, or
F1 594 10 57 955 76 96 96.5

in which the default settings are highlighted in bold. We can
obtain the following insights:

Sensitivity to the control flow and dataflow differs from
challenges. Using only DFG as the source code model (i.e., A+D+S)
works better on some challenges, e.g., SUB and SUM. This is be-
cause there are much more operators than branches within these
source code (see Table 1). In other words, these challenges have
simple control flows, but complex computational logic, which
is related to data flow heavily. Thus, compare to control flow
edges, data flow edges play a more critical role on the test results.
However, in general, CFG only (i.e., A+C+S) could perform better
than adopting only DFG.

Introducing different types of edges in CFG may lead to
poorer performance. Introducing different types of edges plays
a positive role on some challenges, including SUB, 721C, 731C,
742C, and 822C. However, on other challenges, MFGNN performs
better when the source code model is untyped (e.g., A+C+S).
This is because these challenges require fewer branches than
the others (see Table 1). The imbalanced distribution of types
lead to ineffective optimization of the model on different types.
Therefore, the uneven distribution of the number of different
edge types prevents MFGNN from effectively fusing the features
of different types of flows.

10

A+D+S which removed control flow edges), the approach still
performed better than B+C+D+M, which represents node by Bag-
of-Words (BoW) model instead of AST. Compared to the model in
BoW, i.e., B+C+D+M, our source code model (A+C+D+M) resulted
in 7.7% and 9.8% improvement on accuracy and F1, respectively.
Because the node representation is the only independent variable
here, we can conclude that AST is a better node representation
option for our task. Compared to AST, BoW lacks both the lexical
order and syntactic structures, which are essential for a proper
representation of basic blocks.

AGN4D is the best choice among the three GNNs. To examine
the effectiveness of AGN4D, we altered it into two other common
GNNs, i.e.,, GCN and GGNN, respectively, into our approach for a
comparison study. Table 7 shows that AGN4D outperformed the
other two GNNs, with an average of 2.7% and 5.3% higher accuracy
and F1, respectively.

Summation is a better choice than concatenation in con-
textual feature embedding stage. From the results, the use of
summation as a graph feature synthesis method (i.e., the last
formula of (2)) delivered better performance. This is because
concatenation doubles AGN4D’s hidden dimension layer by layer,
increasing the number of model parameters and resulting in
model overfitting issue.

5.6. Threats to validity

In conducting our experiments, the following factors existed
that might affect the validity of the our study.

Z. Zhao, B. Yang, G. Li et al.

The Journal of Systems & Software 184 (2022) 111108

Table 7

Results of ablation studies.
Different settings SUB MNMX FLOW SUM 1062C 721C 731C 742C 822C Avg

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

A+C+S 706 706 809 795 826 722 714 722 668 570 592 535 664 569 746 486 602 508 703 624
A+D+S 708 714 809 767 787 693 715 718 66.2 435 575 537 638 563 722 450 563 496 68.7 59.7
A+C+M 706 722 807 776 821 707 708 708 649 488 597 542 669 566 755 529 594 520 701 618
B+C+D+M 69.7 683 754 688 728 635 646 640 57.1 388 490 442 616 517 680 403 557 439 638 537
A+C+D+M 745 747 831 814 818 710 729 735 680 532 595 545 700 610 738 516 599 503 715 635
concatenation 669 638 795 746 806 694 706 70.1 659 510 558 504 668 540 698 434 603 470 685 582
summation 745 747 831 814 818 710 729 735 680 532 595 545 700 610 738 516 599 503 715 635
GCN 723 704 804 772 813 718 707 708 646 435 566 522 643 532 697 399 598 488 689 586
GGNN 747 739 832 817 828 721 715 712 627 416 537 481 636 506 695 427 567 380 687 578
AGN4D 745 747 831 814 818 710 729 735 680 532 595 545 700 610 738 516 599 503 715 635

Implementation of baselines. The internal threat to validity
is concerned with our implementation. We reproduced TBCNN,
ASTNN, CtxG, DBN, TCA+, TreeLSTM, BugContext. Although we
have implemented these baseline methods as described in the
original studies, we cannot guarantee that these implementations
exactly match the original ones.

Applying baselines on our dataset. In carrying out the task,
we found that many of the baseline methods were designed
specifically for a particular task, for example code2vec’s goal
was to perform function name generation and CtxG’s goal was
to perform var-misuse detection. Although we compared these
methods as baselines, we cannot guarantee that these we can
meet the conditions for these representations of the model to
work well.

Missing projects in PROMISE dataset. Our RQ2 and RQ3
experiments are based on the PROMISE dataset, a very early
dataset in which some versions of projects recorded are not
available on the web. We were only able to conduct experiments
using projects that could be found and could not directly use the
original experimental data from the DBN (Wang et al., 2016) and
TreeLSTM (Dam et al., 2019) studies.

CFG differences in different languages. For C/C++, we use
Clang to get the CFG, which converts the program to LLVM IR, a
kind of three-address code, and then builds the CFG on top of that.
For Java, we use Soot to get the CFG. Soot will first convert the
program into Jimple, a kind of SSA, and then build the CFG on top
of that. Because of the difference in the intermediate languages
used, the final CFG may not be exactly the same for the same
statements in both languages.

Conduct experiments on more tasks and more practical
datasets. To evaluate the feasibility and effectiveness of MFGNN,
we have conducted several tasks (e.g., program classification and
defect prediction) on the datasets consisting of source codes from
0] and open source projects. Though the variety of evaluated tasks
and the sources of datasets were limited, we argue that MFGNN
is robust enough even on large-scale real-world industrial code to
perform other types of tasks, which, however, requires follow-up
studies in the future.

6. Related works
6.1. Source code representation in deep learning

While performing program analysis with deep learning, the
representation model of source code is a fundamental prob-
lem, which could be roughly divided into: AST-based and CFG-
based. Specifically, as for the AST-based source code model, some
studies adopted the AST that is generated from the program
directly (White et al., 2016; Mou et al., 2016; Dam et al., 2019) or
with some modifications (e.g., inserting additional edges between
nodes Allamanis et al., 2017). Moreover, some works (Zhang

11

et al,, 2019; Alon et al,, 2019, 2018a) just extracted part of the
generated AST to conduct the following analysis. For examples,
Alon et al. (2019, 2018a) chose the collection of AST’s token-to-
token path as the source code model, and learned the features by
attention-based models. Unlike these models, we chose to split
the AST into subtrees based on basic blocks. Though it would
slightly broke the integrity of the AST, the explicit contextual
dependencies in the CFG could reassemble parts of the AST,
making dependencies more salient and easier to learn.

As for the CFG-based source code model, there are two factors
that significantly affect the following program analysis with deep
learning. One is the way of representing of basic blocks; the
other is the role of the graph. To be specific, several works have
tried different way to basic blocks in deep learning, e.g., assembly
instruction (Phan et al., 2018), Bag-of-Words model (Fang et al.,
2020; Wang et al., 2020) and line number (Li et al., 2019). As for
the graph, it can be utilized as a leading role (Phan et al., 2018;
Fang et al., 2020; Wang et al., 2020) or an auxiliary role (Li et al.,
2019) during the analysis. For example, Wang et al. (2020) used
graph as a leading role and represents basic blocks with Bag-of-
Words model composed of AST’s grammatical nodes. Our model
similarly adopted graph as a leading role, but represented basic
blocks with the corresponding subtree of AST. We retained the
structure of AST, which helped us better represent the context-
independent grammatical differences than other models.

6.2. Program classification

Program classification, i.e., distinguishing and classifying pro-
grams by some features from various aspects, is one of the basic
software engineering tasks. For example, as one of the applica-
tions, functional code clone detection (Zhang et al., 2019; Fang
et al,, 2020; Yu et al,, 2019) is to determine whether two code
snippets implement the same functionality. It is achieved by
classifying the functional features of the given program. Except
from functional features (Mou et al., 2016; Zhang et al.,, 2019),
language features (Ugurel et al., 2002), defect features (Dam
et al,, 2019; Wang et al,, 2016; Phan et al., 2018) and structure
features (Zanoni et al., 2015) are also widely adopted by program
classification tasks. In this paper, we decided to apply defect
features on classifying program test results. Though Phan et al.
(2018) have done this task before, the size of dataset and code
complexity were relatively limited compared to ours, which were
collected and constructed by crawlers and huge manual efforts.

6.3. Software defect prediction

Software defect prediction is a challenging task that has been
researched extensively. Prior to the rise of deep learning, re-
searchers have adopted machine learning to achieve such a goal
(Nam et al., 2013; Yang et al., 2015; Walden et al., 2014; Xia et al.,

Z. Zhao, B. Yang, G. Li et al.

2016; Breiman, 2001; Briand et al., 2002; Khoshgoftaar and Lan-
ning, 1995; Khoshgoftaar et al., 2000; Xing et al., 2005; Munson
and Khoshgoftaar, 1992). However, these techniques require fea-
ture engineering that is normally time- and resource-consuming.
For example, Xing et al. (2005) proposed a SVM-based defect
predicting methods, which depends on both software change
metrics and software complexity metrics. Deep learning tech-
niques eliminated the process of feature engineering, and re-
searchers began focusing on improving prediction performance
using suitable source code models (Yang et al., 2015; Wang et al,,
2016; Chen et al., 2020; Dam et al., 2019). Existing works have
pointed out that the source code model needs contextual de-
pendencies (Li et al.,, 2017) and should be able to distinguish
subtle changes (Wang et al., 2016). Both of them were taken into
account in our method. Specifically, the contextual dependencies
comes from the ECFG; and the subtle changes, i.e., subtle gram-
matical differences, are represented by the structural differences
of the AST. To the best of our knowledge, no other existing source
code models have achieved both of these goals.

7. Conclusion

In this paper, we have proposed a new source code model
based on ECFG and an attention-based model, namely MFGNN.
Our source code model restricts the order in which MFGNN
extracts features, and makes it more efficient and effective for
MFGNN to obtain program features. Moreover, we have eval-
uated MFGNN on three practical tasks: program classification,
software defect prediction and code clone detection. The results
showed that MFGNN significantly outperformed baseline meth-
ods. For example, compared with the well-known source code
model code2seq (Alon et al., 2018a), the scale of parameters
decreased more than 30-fold while the overall accuracy was
increased by 26.0%. Our research illustrated that the performance
heavily depended on the construction of source code model.
Additionally, we highlights a few research directions for future
work, e.g., applying our method on more general real-life projects
and improving the graph and MFGNN for better performance.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We thank anonymous reviewers for their thoughtful com-
ments. Thanks to Ningyu He for proofreading the manuscript. This
research is supported by the National Key R&D Program of China
under Grant No. 2020AAA0109400, the National Natural Sci-
ence Foundation of China under Grant Nos. 62072007, 61832009,
61620106007, 61502011, the Australian Research Council Dis-
covery Project (Grant No. DP210102447), and “the Fundamental
Research Funds for the Central Universities, China” (BLX202003).

References

Allamanis, M., Brockschmidt, M., Khademi, M., 2017. Learning to represent
programs with graphs. arXiv preprint arXiv:1711.00740.

Alon, U, Levy, O., Yahav, E. 2018a. Code2seq: Generating sequences from
structured representations of code. CoRR abs/1808.01400, arXiv:1808.01400,
URL http://arxiv.org/abs/1808.01400.

Alon, U, Zilberstein, M., Levy, O., Yahav, E., 2018b. A general path-based repre-
sentation for predicting program properties. In: Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation.

12

The Journal of Systems & Software 184 (2022) 111108

Alon, U,, Zilberstein, M., Levy, O., Yahav, E., 2019. Code2Vec:Learning distributed
representations of code. In: Proceedings of the ACM on Programming
Languages, Vol. 3. POPL, pp. 1-29. http://dx.doi.org/10.1145/3290353, arXiv:
1803.09473.

Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5-32.

Briand, L.C., Melo, W.L, Wust, J., 2002. Assessing the applicability of fault-
proneness models across object-oriented software projects. IEEE Trans.
Softw. Eng. 28 (7), 706-720.

Bruna, J., Zaremba, W., Szlam, A., LeCun, Y., 2014. Spectral networks and locally
connected networks on graphs. In: 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings. URL http://arxiv.org/abs/1312.6203.

Chen, J., Hu, K, Yu, Y., Chen, Z, Xuan, Q. Liu, Y., Filkov, V., 2020. Software
Visualization and Deep Transfer Learning for Effective Software Defect
Prediction. pp. 578-589.

Cvitkovic, M., Singh, B., Anandkumar, A., 2018. Open vocabulary learning on
source code with a graph-structured cache. arXiv:1810.08305, URL http:
//arxiv.org/abs/1810.08305.

Dam, KH. Pham, T, Ng, SW., Tran, T, Grundy, J.C., Ghose, AK, Kim, T,
Kim, C.-J., 2019. Lessons learned from using a deep tree-based model for
software defect prediction in practice. In: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories. MSR, pp. 46-57.

Fang, C., Liu, Z., Shi, Y., Huang,], Shi, Q., 2020. Functional code clone detection
with syntax and semantics fusion learning. In: ISSTA 2020 - Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis. pp. 516-527. http://dx.doi.org/10.1145/3395363.3397362.

Ferrante, J., Ottenstein, KJ., Warren,].D., 1987. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst. 9 (3), 319-349.
http://dx.doi.org/10.1145/24039.24041.

Fout, A., Byrd,], Shariat, B., Ben-Hur, A., 2017. Protein interface prediction using
graph convolutional networks. In: Advances in Neural Information Processing
Systems, pp. 6530-6539.

Frantzeskou, G., MacDonell, S., Stamatatos, E., Gritzalis, S., 2008. Examining
the significance of high-level programming features in source code author
classification. J. Syst. Softw. 81 (3), 447-460.

Hamaguchi, T., Oiwa, H., Shimbo, M., Matsumoto, Y., 2017. Knowledge transfer
for out-of-knowledge-base entities: A graph neural network approach. arXiv
preprint arXiv:1706.05674.

Hamilton, W., Ying, Z., Leskovec,]J., 2017. Inductive representation learning on
large graphs. In: Advances in Neural Information Processing Systems, pp.
1024-1034.

Hu, X, Li, G, Xia, X, Lo, D, Jin, Z, 2018. Deep code comment generation.
In: Proceedings of the 26th Conference on Program Comprehension, pp.
200-210.

Jiang, L., Liu, H., Jiang, H., 2019. Machine learning based recommendation of
method names: How far are we. In: Proceedings - 2019 34th IEEE/ACM
International Conference on Automated Software Engineering. ASE 2019,
IEEE, pp. 602-614. http://dx.doi.org/10.1109/ASE.2019.00062.

Jiang, L., Misherghi, G., Su, Z., Glondu, S., 2007. DECKARD: scalable and accurate
tree-based detection of code clones. In: 29th International Conference on
Software Engineering. ICSE'07, pp. 96-105. http://dx.doi.org/10.1109/ICSE.
2007.30.

Khoshgoftaar, T.M., Lanning, D.L, 1995. A neural network approach for early
detection of program modules having high risk in the maintenance phase. J.
Syst. Softw. 29 (1), 85-91.

Khoshgoftaar, T.M., Yuan, X., Allen, E.B., 2000. Balancing misclassification rates
in classification-tree models of software quality. Empir. Softw. Eng. 5 (4),
313-330.

LeClair, A., Jiang, S., McMillan, C,, 2019. A neural model for generating natu-
ral language summaries of program subroutines. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering. ICSE, IEEE, pp. 795-806.

Li, J., He, P., Zhu, J., Lyu, M.R,, 2017. Software defect prediction via convolutional
neural network. In: 2017 IEEE International Conference on Software Quality,
Reliability and Security. QRS, pp. 318-328.

Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R., 2015. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493.

Li, Y, Wang, S., Nguyen, T.N.,, Nguyen, S.V., 2019. Improving bug detection
via context-based code representation learning and attention-based neural
networks. Proc. ACM Program. Lang. 3, 1-30.

Liu, Y., Loh, H.T.,, Sun, A., 2009. Imbalanced text classification: A term weighting
approach. Expert Syst. Appl. 36 (1), 690-701.

Maying, LuoGuangchun, Zengxue, ChenAiguo, 2012. Transfer learning for
cross-company software defect prediction. Inf. Softw. Technol.

Menzies, T., Greenwald,]., Frank, A., 2007. Data mining static code attributes to
learn defect predictors. IEEE Trans. Softw. Eng. 33, 2-13. http://dx.doi.org/
10.1109/TSE.2007.10.

Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., Bener, A.B., 2010. De-
fect prediction from static code features: current results, limitations, new
approaches. Autom. Softw. Eng. 17 (4), 375-407. http://dx.doi.org/10.1007/
s10515-010-0069-5.

Z. Zhao, B. Yang, G. Li et al.

Mou, L, Li, G., Zhang, L., Wang, T., Jin, Z., 2016. Convolutional neural networks
over tree structures for programming language processing. In: Thirtieth AAAI
Conference on Artificial Intelligence.

Munson,]J.C., Khoshgoftaar, T.M., 1992. The detection of fault-prone programs.
IEEE Trans. Softw. Eng. 26 (5), 423-433.

Nam,], Pan, SJ. Kim, S. 2013. Transfer defect learning. In: 2013 35th
International Conference on Software Engineering. ICSE, IEEE, pp. 382-391.

Niepert, M., Ahmed, M., Kutzkov, K., 2016. Learning convolutional neural net-
works for graphs. In: International Conference on Machine Learning, pp.
2014-2023.

Ott, J., Atchison, A., Harnack, P., Best, N., Anderson, H., Firmani, C., Linstead, E.,
2018. Learning lexical features of programming languages from imagery
using convolutional neural networks. In: Proceedings of the 26th Conference
on Program Comprehension, pp. 336-339.

Phan, A., Nguyen, L., Nguyen, Y., Bui, L., 2018. DGCNN: A convolutional neural
network over large-scale labeled graphs. Neural Netw. 108, http://dx.doi.org/
10.1016/j.neunet.2018.09.001.

Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with
neural networks. CoRR abs/1409.3215, arXiv:1409.3215, URL http://arxiv.org/
abs/1409.3215.

Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K., 2016. An
empirical comparison of model validation techniques for defect prediction
models. IEEE Trans. Softw. Eng. 43 (1), 1-18.

Tufano, M., Watson, C., Bavota, G., Di Penta, M., White, M., Poshyvanyk, D.,
2018. Deep learning similarities from different representations of source
code. In: 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories. MSR, pp. 542-553.

Ugurel, S., Krovetz, R., Giles, C.L., 2002. What's the code? automatic classifica-
tion of source code archives. In: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. pp.
632-638.

Velickovi¢, P., Cucurull, G, Casanova, A., Romero, A, Lio, P., Bengio, Y., 2017.
Graph attention networks. arXiv preprint arXiv:1710.10903.

Walden, J., Stuckman, J., Scandariato, R., 2014. Predicting vulnerable components:
Software metrics vs text mining. In: 2014 IEEE 25th International Symposium
on Software Reliability Engineering. IEEE, pp. 23-33.

Wang, Y., Gao, F.,, Wang, L., Wang, K., 2020. Learning semantic program em-
beddings with graph interval neural network 1 (January). arXiv:2005.09997,
URL http://arxiv.org/abs/2005.09997.

Wang, S., Liu, T., Tan, L., 2016. Automatically learning semantic features for defect
prediction. In: 2016 IEEE/ACM 38th International Conference on Software
Engineering. ICSE, IEEE, pp. 297-308.

13

The Journal of Systems & Software 184 (2022) 111108

Wang, K., Su, Z., 2019. Learning blended, precise semantic program embeddings.
ArXiv abs/1907.02136.

Wei, H.-H., Li, M., 2017. Supervised deep features for software functional clone
detection by exploiting lexical and syntactical information in source code.
In: Proceedings of the 26th International Joint Conference on Artificial
Intelligence. In: [JCAI'17, AAAI Press, pp. 3034-3040.

White, M., Tufano, M., Vendome, C., Poshyvanyk, D., 2016. Deep learning code
fragments for code clone detection. In: 2016 31st IEEE/ACM International
Conference on Automated Software Engineering. ASE, IEEE, pp. 87-98.

Xia, X., Lo, D., Wang, X. Yang, X. 2016. Collective personalized change
classification with multiobjective search. IEEE Trans. Reliab. 65 (4),
1810-1829.

Xing, F., Guo, P., Lyu, M.R,, 2005. A novel method for early software quality
prediction based on support vector machine. In: 16th IEEE International
Symposium on Software Reliability Engineering. ISSRE’05, IEEE, p. 10.

Yang, X., Lo, D., Xia, X., Zhang, Y., Sun,], 2015. Deep learning for just-in-
time defect prediction. In: 2015 IEEE International Conference on Software
Quality, Reliability and Security. IEEE, pp. 17-26.

Yao, Z., Peddamail, J.R., Sun, H., 2019. CoaCor: code annotation for code retrieval
with reinforcement learning. In: The World Wide Web Conference, pp.
2203-2214.

Yu, H., Lam, W, Chen, L, Li, G, Xie, T., Wang, Q., 2019. Neural detection
of semantic code clones via tree-based convolution. In: 2019 IEEE/ACM
27th International Conference on Program Comprehension. ICPC, pp. 70-80.
http://dx.doi.org/10.1109/ICPC.2019.00021.

Zanoni, M., Fontana, F.A. Stella, F, 2015. On applying machine learning
techniques for design pattern detection. J. Syst. Softw. 103, 102-117.

Zhang,], Wang, X, Zhang, H., Sun, H., Wang, K, Liu, X, 2019. A novel
neural source code representation based on abstract syntax tree. In: 2019
IEEE/ACM 41st International Conference on Software Engineering. ICSE, IEEE,
pp. 783-794.

Zhao, G., Huang,]., 2018. DeepSim: Deep learning code functional similarity.
In: Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. In: ESEC/FSE 2018, Association for Computing Machinery, New
York, NY, USA, pp. 141-151. http://dx.doi.org/10.1145/3236024.3236068.

Zhong, H., Mei, H., 2019. Learning a graph-based classifier for fault localization.

Zhou, J., Cui, G., Zhang, Z., Yang, C, Liu, Z, Wang, L, Li, C, Sun, M, 2018.
Graph neural networks: A review of methods and applications. arXiv preprint
arXiv:1812.08434.

