
The Journal of Systems & Software 184 (2022) 111108

Z

p
S
d
2
L
h
b
c
t
a
t
e
2
i
H

(
(

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Precise Learning of Source Code Contextual Semantics via Hierarchical
Dependence Structure and Graph Attention Networks✩

hehao Zhao a, Bo Yang b,∗, Ge Li a, Huai Liu c, Zhi Jin a,∗

a Key Laboratory of High Confidence Software Technologies, Peking University, Beijing 100871, China
b School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
c Department of Computing Technologies, Swinburne University of Technology, Hawthorn VIC 3122, Australia

a r t i c l e i n f o

Article history:
Received 8 March 2021
Received in revised form 6 September 2021
Accepted 25 September 2021
Available online 19 October 2021

Keywords:
Graph neural network
Program analysis
Deep learning
Abstract syntax Tree
Control flow graph

a b s t r a c t

Deep learning is being used extensively in a variety of software engineering tasks, e.g., program
classification and defect prediction. Although the technique eliminates the required process of feature
engineering, the construction of source code model significantly affects the performance on those
tasks. Most recent works was mainly focused on complementing AST-based source code models by
introducing contextual dependencies extracted from CFG. However, all of them pay little attention to
the representation of basic blocks, which are the basis of contextual dependencies.

In this paper, we integrated AST and CFG and proposed a novel source code model embedded
with hierarchical dependencies. Based on that, we also designed a neural network that depends on
the graph attention mechanism. Specifically, we introduced the syntactic structural of the basic block,
i.e., its corresponding AST, in source code model to provide sufficient information and fill the gap. We
have evaluated this model on three practical software engineering tasks and compared it with other
state-of-the-art methods. The results show that our model can significantly improve the performance.
For example, compared to the best performing baseline, our model reduces the scale of parameters
by 50% and achieves 4% improvement on accuracy on program classification task.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Recently, deep learning has been increasingly applied into
rogram analysis tasks, such as program classification (Wang and
u, 2019; Ott et al., 2018; Frantzeskou et al., 2008), software
efect prediction (Wang et al., 2016; Tantithamthavorn et al.,
016), and code summarization (Hu et al., 2018; Yao et al., 2019;
eClair et al., 2019). However, the performance on these tasks
eavily depends on the choice of source code model, which can
e divided into three types: abstract syntax tree- (AST-) based,
ontrol flow graph- (CFG-) based and the hybrid model of these
wo. Moreover, depending on the structure of AST adopted during
nalysis, AST-based source code model can be further divided
o the whole AST (Mou et al., 2016; White et al., 2016; Dam
t al., 2019) or partial AST (Zhang et al., 2019; Alon et al., 2019,
018a). The syntactic structure within AST can illustrate all the
nformation of source code, especially the subtle changes on it.
owever, the contextual dependencies are implicit in AST and

✩ Editor: Raffaela Mirandola.
∗ Corresponding authors.

E-mail addresses: zhaozhehao@pku.edu.cn (Z. Zhao), yangbo@bjfu.edu.cn
B. Yang), lige@pku.edu.cn (G. Li), hliu@swin.edu.au (H. Liu), zhijin@pku.edu.cn
Z. Jin).
https://doi.org/10.1016/j.jss.2021.111108
0164-1212/© 2021 Elsevier Inc. All rights reserved.
cannot be extracted and learnt effectively. In contrast, the CFG-
based source code model (Phan et al., 2018; Tufano et al., 2018)
is good at providing contextual dependencies, which can be learnt
effectively by graph neural networks. Nevertheless, CFG is unef-
fective to represent the information of statements located in the
basic blocks. Therefore, some researches proposed methodologies
to embed the contextual dependencies from CFG into AST (Alla-
manis et al., 2017; Li et al., 2019; Alon et al., 2018b). Such a design
idea of the hybrid method still take AST as the core part of the
source code model. It would add the contextual dependencies as
additional edges (Allamanis et al., 2017) to AST or as assistant
features (Li et al., 2019). However, the basic blocks, which are
the basis of contextual dependencies, are paid little attention by
the existing methodologies. To mine the contextual dependencies
effectively, we argue that the features of basic blocks should be
prioritized. Fig. 1 shows our motivational example. These two
code segments come from the PROMISE dataset used in our study.
The defect in Fig. 1(a) is that returning a null value on line 7
will cause a NullPointerException, and the corresponding fix is to
return a Field type array of length 0 here. After analyzing this
example, we have the following observations.

Observation 1: This defect depends on the actual execution
path. As shown in Fig. 1(a), the defect is triggered only if the
condition on line 6 is met. However, if the caller of the getFields

Z. Zhao, B. Yang, G. Li et al. The Journal of Systems & Software 184 (2022) 111108

t

f
b
t
t
c

t

t

t
W

Fig. 1. A motivating example from PROMISE dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)
unction properly handles caught exceptions, this defect will not
e triggered. Thus, a reasonable source code model should reflect
he execution path. Furthermore, since a large number of invoca-
ions to getFileds are outside from the Document class, the source
ode model should not be limited to a certain granularity.
Observation 2: These two source codes differ slightly but with

otal different semantics. As shown in Fig. 1, the difference of
these two source codes is a choice between returning an identifier
NO_FIELDS or a null in line 7. The code in Fig. 1(b) does not cause
he exception because that NO_FIELDS refers to an object (see
line 2 of Fig. 1(b)). Thus, the difference of these two source code
is actually the difference between object and null. Moreover, for
he deep learning models with some textual features (e.g., Bag of
ords), the learning of these two words (null and NO_FIELDS) is

uneven, since null occurs more frequently than NO_FIELDS, which
would raise the difficulty for models to learn the real difference.

According to the Observation 1, CFG would intuitively become
the first choice of source code model, since CFG can show the
potential execution path and can be constructed on any granu-
larity. But there still exists the issue about how to represent the
basic blocks within the CFG. In the existing CFG-based works,
basic blocks are mainly represented by either line numbers (Li
et al., 2019) or Bag of Words (Zhong and Mei, 2019; Wang et al.,
2020). However, according to the Observation 2, these methods
only utilize the textual features, which significantly relies on the
frequency of occurrence. Thus they cannot effectively capture the
difference shown in Fig. 1 to distinguish NO_FIELDS and null. We
argue that a proper source code model should introduce semantic
differences (e.g., the difference between object and null) into the
deep learning models more than the textual distinctions.

Motivated by these observations, we propose a novel source
code model. Specifically, to overcome the limitation mentioned
in the Observations 1, we choose CFG with dataflow (ECFG),
which can reflect the actual execution paths, as the backbone of
the source code model. To address the Observations 2, we use
the block-level AST, i.e., each AST subtrees correspond to each
ECFG basic blocks. Take the source codes in Fig. 1 to illustrate
the benefit of such way: since NO_FIELDS represents an object
while null is just a keyword, the syntax rule for them are not
same, which brings different AST structures. To sum up, the whole
model can be divided into two levels. At the outer level, we use
the inter-procedure ECFG to express the dependencies between
the basic blocks. At the inner level, we choose AST to express the
structure of each basic block.

Our source code model has three advantages. First, benefiting
from the ECFG as the main body, the granularity of our source
code model can be flexibly adjusted. Second, also benefiting from
the ECFG, our source code model can show the potential exe-
cution path explicitly, thus the contextual dependencies can be
captured effectively by a graph neural network. Third, benefiting
from the substructure of AST, our source code model can have
a more informative representation of basic blocks, hence the
features within each basic blocks can be captured effectively by
a tree-based neural network.
2

Furthermore, we designed a Multi-Flow Graph Neural Net-
work (MFGNN) to extract features from our source code model.
The calculation of MFGNN can be divided into three steps. At
the first step, we obtain features named local features through
TBCNN (Mou et al., 2016) from the collection of AST-
substructures, which are corresponded to the basic blocks in
ECFG. At the second step, we extract features named contextual
features from ECFG, whose basic blocks has been filled with local
features. Since the ECFG is a directed graph with multi-typed
edges where we want to adopt attention mechanism, we did a
slightly modification on the original Graph Attention Network
(GAT). Specifically, the modified model supports directed graph
and multi-typed edges, we name it as Attention-based Graph
Network for Directed Graph (AGN4D), and apply it in the second
step. At the third step, we apply a fusion layer to coalesce these
features into hybrid features, which can be used for subsequent
tasks.

To be specific, this paper has the following three major con-
tributions:

• We propose a source code model that combines AST and
CFG with dataflow (ECFG). The source code model can re-
flect both contextual dependencies and syntactic structure,
which allows neural networks to learn richer program fea-
tures.

• We design a learning model to obtain contextual seman-
tics from the source code model, namely Multi-Flow Graph
Neural Network (MFGNN). MFGNN integrates an attention-
based graph learning layer evolves from GAT.

• MFGNN is implemented and evaluated on three typical
tasks, namely the program classification, software defect
prediction and code clone detection. The results show that
MFGNN can extract richer program features than the state-
of-the-art methods, and hence greatly improve the perfor-
mance of these tasks.

The remainder of this paper is organized as follows: Section 2
introduces the background of our work. Section 3 describes the
new source code model and MFGNN. We report our experimental
studies and results in Sections 4 and 5, respectively. The related
work is discussed in Section 6. Finally, we conclude this paper in
Section 7.

2. Background

In this section, we would introduce some basic concepts and
terms that are used in this paper.

2.1. Program representation

To represent a piece of program, there are several ways: token
sequences, AST, CFG (Tufano et al., 2018). Among all of them, AST
and CFG are adopted most widely, thus we would introduce both
of them in this section.

Z. Zhao, B. Yang, G. Li et al. The Journal of Systems & Software 184 (2022) 111108

2

a
g
r
g
s
g
o
2
e

2

n
c
p
t
e
i
a
a
w
e
e

2

a
a
2
m

i
t
m
M
T
n
u
n

e

3

t

3

t
i
d
t
(
a
(

c
t
b
i
i
i
u
b
n
i
t
p
t
o
i
t
d

C
r
r
c
t
v
b
b
o
a
f
r
o

W
r
f
(
o
o
t
t
d

.1.1. Abstract Syntax Tree
Abstract Syntax Tree (AST) is a tree representation of the

bstract syntactic structure of source code written in a pro-
ramming language (Mou et al., 2016). Each node on the AST
epresents a nonterminal symbol in the syntax rules of the pro-
ramming language. Being a near-source-level program graph
tructure, AST can represent the syntactic information of pro-
rams in a simple way, which makes AST widely used in a variety
f software engineering tasks (Mou et al., 2016; Allamanis et al.,
017; Dam et al., 2019; Zhang et al., 2019; Wang et al., 2016; Alon
t al., 2019, 2018a).

.1.2. Control Flow Graph
Control Flow Graph (CFG) is a directed graph in which each

ode (namely basic block) represents a set of sequentially exe-
uted instruction sequences, and the edges represent control flow
aths. CFG is mostly used in static analysis and compiler applica-
ions, as it can accurately represent the flow inside a program. For
xample, through graph reachability analysis, CFG can help locate
naccessible code in programs, and find syntax structures such
s loops. As a source code model for deep learning, CFG’s edges
re usually considered to represent the contextual dependencies,
hich have a significant impact on the performance of software
ngineering tasks (Li et al., 2019; Fang et al., 2020; Allamanis
t al., 2017).

.2. Graph neural networks

Graph is a generic data structure to effectively abstract objects
nd their connections (Zhou et al., 2018). It has been widely used
cross multiple domains, such as social networks (Hamilton et al.,
017), chemical interaction (Fout et al., 2017) and knowledge
odeling (Hamaguchi et al., 2017).
Graph Neural Networks (GNNs) are methods used to mine the

nformation within a graph and obtain the embedding vector of
he graph under a learning model. GNNs are mostly based on the
essage-passing mechanism, and consist of two functions: the
essage function and the Aggregate function (Zhou et al., 2018).
he Message function is used to transform the original vector of
odes to obtain the hidden vector; and the Aggregate function is
sed to aggregate the transformed vectors of a node’s adjacency
odes and obtain an embedding vector of the node.
The Message function is generally represented using a param-

ter W ∈ RF∗F ′

. Let X = {x1, x2, . . . , xn}, xi ∈ RF be the initial
features of nodes, and H = {h1, h2, . . . , hn}, hi ∈ RF ′

be the
transformed features of nodes. Then, the Message function can
be defined as:

hi = Message(xi) = Wxi,

where F represents the initial dimension of nodes’ features, and
F ′ represents the transformed dimension of nodes’ features.

Different GNNs often vary in the Aggregate functions. For ex-
ample, GCN (Bruna et al., 2014) uses summation as the Aggregate
function, which is defined as follows.

h′

i = Aggregate(h,Ni) =

Ni∑
i

hi,

where Ni is the collection of adjacency nodes of i.
GAT (Veličković et al., 2017) uses the self-attention mecha-

nism as the Aggregate function. GAT first calculates self-attention
weights for all edges in the graph, as defined below:

αij =
exp(LeakyReLU(a(Whi ∥ Whj)))

Σk∈Niexp(LeakyReLU(a(Whi ∥ Whk)))
,

where ∥ is the concatenation operation and a : RF′

× RF′

→ R is
the shared attention mechanism.
3

GAT then linearly combines the transformed features of the
neighboring nodes according to the attention weights, which is
defined as:

h′

i = σ (
Ni∑
j

αijhj)

where σ is a nonlinearity function.

. Approach

In this section, we would introduce our source code model and
he learning model named MFGNN.

.1. Constructing graph through combining ECFG and AST

The combination of ECFG and AST can be considered as a
ype of program dependency graph. The backbone of the graph
s an inter-procedural CFG. A CFG G = (B, E) of the program is a
irected graph, where B is a collection of basic blocks and E con-
ains all control flow relationships. We choose three-address code
e.g., LLVM IR for C/C++ and Jimple for Java) as the intermedi-
te representation when generating CFG by analysis frameworks
e.g., Clang for C/C++ and Soot for Java).

From the motivating example (see Section 1), we can con-
lude that a precise modeling for basic block is essential for
he following analysis. Therefore, we choose AST to model basic
locks as its nature of expressing syntactic structures and code
nformation. To further enrich the information in the AST, we
ntroduce the data types of variables to the subtrees of AST, which
nherently lacks of such information and corresponds to variable
sage (e.g., DeclRefExpr node in Clang). Specifically, for the
asic data type, we directly add it as a leaf node of the variable
ode. For user-defined classes, we refer to the method mentioned
n Cvitkovic et al. (2018), and separate these classes according
o the Camel-Case naming. For type conversion statements, we
rocess both the original type and the target type according to
he above method and then add them into the AST as a subtree
f the type conversion node. Another aspect we need to consider
s the constants. To handle different constants, we disassemble
he constant value bitwise (e.g., The constant nodes 456 will be
isassembled to three nodes, represent 4, 5, 6,respectively.).
To address the lack of dataflow dependency in both AST and

FG, in addition to the control flow, call flow, and exception flow
elationships included in the CFG, we also introduce data flow
elationship into our graph. Specifically, dataflow relationship
omes from the intra-procedural dataflow analysis. By traversing
he CFG, we have built two collections of variables: define stores
ariables defined in the block and use stores variables used in the
lock. The dataflow relationship between basic blocks is obtained
y reaching definition analysis later. Then we divide the edges
f control flow into four categories according to their function-
lities: sequential execution, conditional true branch, conditional
alse branch and switch branches. Different categories of flow
elationship are labeled distinctly. Overall, there are seven types
f edges in our source code model.
The final graph of the motivating example is shown in Fig. 2.
e can observe that the red and green blocks of the two snippets

espectively containing different AST, representing the great dif-
erences in local features between blocks. For the correct version
Fig. 1(b)), the AST of the green block indicates that a static field
f that class is returned. For the faulty version (Fig. 1(a)), the AST
f the red block indicates that a null value is returned. This slight
extual difference, NO_FIELDS vs. null, can be easily learnt with
he help of a tree-based neural network due to the significant
ifference in the AST. The control flow and the dataflow edges

Z. Zhao, B. Yang, G. Li et al. The Journal of Systems & Software 184 (2022) 111108

s

Fig. 2. The comparison of the motivating example using the combination of CFG and AST. Black edges for sequential execute, orange edges for conditional true
branch and fuchsia edges for the false branch. The dashed-purple edges are dataflow edges.. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
t

t
S
t
f

3

w
d
G
h
w

r
o
i
g

,
g
f
g
l
f

t

(i.e., dashed-purple edges) jointly describe the use of variables,
and the conditional true edges (i.e., orange edges) indicate the
branch and precondition of the faulty block. Combined with the
difference in local features between green and red blocks, our
ource code model leads to different context features.

3.2. Multi-Flow Graph Neural Network

We design a neural network model to obtain the features
of our representation model and name it as Multi-Flow Graph
Neural Network (MFGNN). Fig. 3 shows the overall structure of
the model. The learning process can be divided into three stages:
local features embedding stage, contextual features embedding
stage and fusion stage. In the first stage, the tree-based network is
used to learn the local features for each block in B. In the second
stage, attention-based graph neural network for directed graph
(AGN4D) is used to learn contextual features in the combined
graphs based on local features of each block. In the final stage,
a fusion layer is used to fuse local features and contextual features,
and the contextual semantics are obtained.

3.2.1. Local features embedding
We use Tree-based Convolutional Neural Network (TBCNN) to

obtain the local features in each block. The original TBCNN is not
suitable for our extended AST because of the additional contents
on the leaf nodes of the extended AST. The learning process of
the original TBCNN ignores the fact that the deeper the node
in the AST, the richer the information. Therefore, we adjust the
preset weights of TBCNN to increase the weight of deeper nodes
in the convolution window of TBCNN, i.e., the nodes with richer
information would have a more significant impact on the training
process of the model. The formulas of the weights are shown as
follows:

ηt
i =

di − 1
ηl
i = ηt

i
pi − 1

ηr
i = ηt

i (1 − ηl
i), (1)
dmax − 1 n − 1
4

where di is the depth of node i in the entire tree, dmax is the depth
of entire tree, pi is the position of the node i in subtree, and n is
he total number of i’s siblings.

The importance of local features is two-fold: first, as the fea-
ures of each block, local features is the input for AGN4D (see
ection 3.2.2) for learning contextual features; second, local fea-
ures play an critical role within the final features, so we pass local
eatures to the fusion layer (see Section 3.2.3) directly.

.2.2. Contextual features embedding
Our source code model can be considered as a directed graph

ith edge types. Therefore, based on GAT (see Section 2.2), we
esign a network layer nested in MFGNN, named Attention-based
raph Neural Network for Directed Graph (AGN4D), which can
andle directed graph and multiple types of edges. With AGN4D,
e can extract contextual features from the combination graph.
Suppose G is an instance of the combined graph and RG is the

everse graph of G. Let X = {x1, x2, . . . , xn} represent local features
f the blocks in the set B obtained in the previous stage. Let the
nitial graph embedding H0

= {h0
1, h

0
2, . . . , h

0
n} where H0

= X , the
raph embedding update process of G is as follows:

klo,u = MSGl
o(h

l−1
u) klr,u = MSGl

r (h
l−1
u)

hl
o,u = Agg l

o(k
l
o,u, {k

l
o,v|v ∈ NG

u })

hl
r,u = Agg l

r (k
l
r,u, {k

l
r,v|v ∈ NRG

u })

hl
u = hl

o,u + hl
r,u + hl−1

u

(2)

where NG
u is the collection of successors of block u in original

raph G and NRG
u for reverse graph RG. MSGl

o represents the MSG
unction of the original graph at layer l and MSGl

r for the reverse
raph. Agg l

o refers to the Agg function of the original graph at layer
and Agg l

r for the reverse graph. Note that MSG function and Agg
unction do not share parameters between different layers.

After obtaining the graph embedding from the two graphs,
he graph embedding of previous layer and current layer are

Z. Zhao, B. Yang, G. Li et al. The Journal of Systems & Software 184 (2022) 111108

c
s

f
w
a

k

c
s

A
i
b

a

3

f
g
c
t
a
R

4

w
e
3

4

M
o
d

Fig. 3. MFGNN structure.
4

o
d
l
c
f
t
n
a
i
i

onnected by a skip-connection to obtain the final graph repre-
entation of this layer.
The MSG function needs to transform the graph embedding

rom the previous layer to obtain the features of for this layer,
hich is parameterized by a weight matrix W l

key which is defined
s follows:
l
u = MSGl(hl−1

u) = W l
keyh

l−1
u . (3)

The Agg function aggregates features in successor blocks and
urrent block. We add support for multiple types of edges to the
elf-attention mechanism of GAT, defined as follows:

elv = P l
srck

l
u + P l,f

dstk
l
v ⟨u, v, f ⟩ ∈ E

αl
v = softmax({LeakyReLU(elv)|v ∈ Nu})

h′

u = Agg l(klu, {k
l
v|v ∈ Nu}) = σ

(∑
v∈Nu

αl
vk

l
v

) (4)

, where f stands for the flow type of the edge from u to v.
ttention mechanism is parameterized by P l

src and P l,f
dst , which

ndicates the importance of the f -type flow dependency between
locks u and v.
We pass the h′

u of the last layer of AGN4D to the fusion layer
s contextual features.

.2.3. Fusion layer
The main functionality of the fusion layer is to fuse local

eatures and contextual features into the hybrid features of the pro-
ram. In our design, the fusion layer first adds local features and
ontextual features, then gets the fixed size program feature vector
hrough dynamic pooling. In practice, we choose max-pooling
s a pooling function. Finally, we train a classifier (i.e., Logistic
egression (LR)) for classification tasks.

. Evaluation

We conducted a series of experiments to evaluate MFGNN
ith comparison against some existing state-of-art methods. Our
xperiments run on a 4 T k40c GPUs machine with Xeon E5-2310
2 GB RAM.

.1. Research questions

To evaluate the effectiveness of our source code model and
FGNN, and compare themwith several state-of-the-art methods
n some particularly tasks, our experiments were particularly
esigned to answer the following five research questions:

RQ1 How is the performance of MFGNN in classifying datasets
that consists of programs with small textual but large se-
mantic differences?
5

RQ2 How is the performance of MFGNN in Within-Project Defect
Prediction (WPDP) task compared with the state-of-the-art
methods?

RQ3 How is the performance of MFGNN in Cross-Project Defect
Prediction (CPDP) task compared with the state-of-the-art
methods?

RQ4 How is the performance of MFGNN in Functional Code-Clone
Detection (CCD) task compared with the state-of-the-art
methods?

RQ5 To what extent do different components in MFGNN influ-
ence the performance?

.2. Datasets

For RQ1 and RQ5, we selected two datasets as the objects of
ur experiments, namely CodeChef and Codeforces. The Codechef
ataset is collected by Phan et al. (2018) and composed of so-
utions, written in C/C++, which are submitted by users for four
hallenges, namely SUB, MNMX, FLOW, and SUM. However, these
our challenges are trivial (e.g., FLOW only requires an implemen-
ation of the GCD algorithm), which cannot evaluate the effective-
ess of our tool thoroughly. Thus, we further manually collected
dataset, namely Codeforces, from a public website.1 Specifically,
t consists of solutions submitted by users for five challenges,
.e., 1062C2, 721C3, 731C4, 742C5 and 822C6. The challenges
involved in the Codeforces dataset covers a variety of algorithms
that are more complicated (e.g., disjoint-union sets, Dijkstra and
greedy algorithm). Specifically, the detailed description of these
challenges are described as follows:

• 1062C: Given a binary-valued string and a list of intervals.,
for each interval, the frequencies of each value in the inter-
val is used to calculate a formula. A prefix sum (and product)
algorithm is required to solve this challenge.

• 721C: Given a weighted directed graph, the shortest path
is found between two specific nodes. Dijkstra algorithm is
required to solve this challenge.

• 731C: Given an undirected graph, the number of connected
components in the graph is counted. A disjoint-union sets is
required to solve this challenge.

• 742C: Given a directed graph, the least common multi-
plier (LCM) is calculated for the lengths of all the circles in
the graph. To solve this challenge correctly, circle finding
algorithm and LCM algorithm are required.

1 https://codeforces.com.
2 https://www.codeforces.com/problemset/problem/1062/C.
3 https://www.codeforces.com/problemset/problem/721/C.
4 https://www.codeforces.com/problemset/problem/731/C.
5 https://www.codeforces.com/problemset/problem/742/C.
6 https://www.codeforces.com/problemset/problem/822/C.

Z. Zhao, B. Yang, G. Li et al. The Journal of Systems & Software 184 (2022) 111108

T
T

t
l

able 1
he statistics of program classification dataset for RQ1 and RQ5.
Index CodeChef Codeforces

Problems SUB FLOW MNMX SUM 1062C 721C 731C 742C 822C
Instance Count 2313 5487 9693 11666 9136 16084 10170 6971 17379
Avg. Line of Code 30 25 25 36 45 65 55 52 55
Avg. Branches Count 9 8 8 12 12 10 21 15 18
Avg. Operators Count 25 15 15 35 40 40 29 30 39
s
s
A
c
t
e
m
c
t
t
c

• 822C: Given a collection of weighted intervals, a subset of
the minimum weight sum is found to satisfy some condi-
tions (e.g., no intersect between intervals). A greedy algo-
rithm is required to solve this challenge.

For each program in both datasets, there is a label to indicate
he running result of the corresponding program. The meaning of
abels is detailed in the following:

• Accepted (AC): The program is able to pass all test cases;
• Wrong Answer (WA): The program can execute normally

but output incorrect results;
• Runtime Error (RE): The program cannot execute normally

on some test cases, which are generally due to illegal mem-
ory access or operation error, e.g., divided by zero;

• Time Limited Exceeded (TLE): The program does not re-
sponse within the time limits;

• Memory Limited Exceeded (MLE): The consumed resource,
i.e., memory, exceed the requirement.

Except for the AC, different running results correspond to
different defects in source code. For example, the source code
with the TLE often contains redundant steps or dead loops, while
the source code with the WA often contains functional errors.
Therefore, we argue that a reasonable source code model should
reflect these differences and is able to classify them effectively.

Additionally, we conducted a pre-processing on both datasets.
First, we removed the source code that are irrelevant to the cor-
responding challenge. Second, we removed the duplicated ones
from datasets. Third, to avoid mislabeling, we generated some
test cases according to the requirements of the corresponding
challenge. Then, we re-ran the source code and re-labeled them
that were mis-labeled. Finally, for each dataset of challenges, we
split each of them into training set, validation set and test set in
3:1:1 ratio. Table 1 shows some metrics of the final datasets.

For RQ2 and RQ3, we have selected another well-known public
dataset, namely PROMISE. The reason is that it has been widely
used for software defect prediction (Wang et al., 2016; Dam
et al., 2019; Chen et al., 2020), and it consists of several well-
known open-source Java projects. Except for the jedit (Version
3.2), which cannot be compiled properly, the remaining 10 Java
projects and their corresponding versions that we selected are
identical to a previous work (Wang et al., 2016) for comparison.
Finally, 1395 source code files, which cannot be processed suc-
cessfully by our Soot-based generator, were removed from the
dataset. The statistical description of the final dataset for RQ2 and
RQ3 is shown in Table 2.

For the remaining research question, i.e., RQ4, we have se-
lected a public dataset, namely OJClone, which has been adopted
by several works (Zhang et al., 2019; Fang et al., 2020). It was
collected from an online program judgement system for C/C++
source code. Specifically, OJClone contains 15 program tasks, and
each of them is composed of 500 source code files submitted
by users. For the same task, different users’ source codes could
pass the test and got AC verdict, and thus can be considered as
functional code clone. In other words, for each source code pair
in the dataset, it will be labeled by either 0 for non-cloned pair
or 1 for cloned pair. Similarly to the classifying task, we shuffled
and split the dataset into training, validation and testing in 3:1:1

ratio.

6

Table 2
The statistics of PROMISE dataset, which is specialized for RQ2 and RQ3.
App Ver Mean files Mean defective Defective rate

lucene 3 247 140 56.7
synapse 3 188 52 27.7
xerces 2 295 54 18.3
xalan 2 665 237 35.6
camel 3 700 165 23.6
log4j 2 70 29 41.4
ant 3 422 95 22.5
jedit 3 311 67 21.5
poi 3 328 219 66.8
ivy 2 253 26 10.3

4.3. Experiment settings

In this section, we present the setup of each RQ’s experi-
ment, involving detailed settings about our method, the choices
of baseline methods and comparison metrics.

4.3.1. Settings for MFGNN
The input of MFGNN consists of four parts: (1) a collection

of AST nodes (represented by one-hot vectors); (2) a collection
of AST’s substructures; (3) a mapping graph (i.e., mapping the
substructure to corresponding basic block); and (4) an ECFG As
for the hyper-parameters, the embedding dimension of the AST
nodes is set as 50. And the dimension of AGN4D, which is stacked
with three layers, was set as 200. MFGNN was optimized by
Adamax, and trained for 200 epochs. During the training, we
selected the parameters (i.e., weights of MFGNN) that performed
best on the validation set, and evaluated them on the test set.

4.3.2. Settings for baselines
For RQ1. To illustrate the effectiveness of MFGNN, we choose
three other well-known groups of representative methods for
comparison:

SVM-based approaches We chose SVM-based approaches to
demonstrate that both datasets, i.e., CodeChef and Codeforces,
do consist of source code with small textual but large semantic
distinctions. In terms of classifying source code files according
to their textual features, the more indistinguishable the source
code are, the worse SVM-based methods would perform. To show
the textual distinguishability of our dataset, we choose TF–IDF
and BoW features as the textual features, and feed them into
RBF-kernel SVM.

AST-based approaches To illustrate the advantages of our
ource code model over AST in program classification, we chose
everal typical AST-based approaches. Specifically, according to
ST granularity, we can divide the AST-based approaches into two
ategories. One uses the entire AST of source code, like represen-
ative methods: TBCNN (Mou et al., 2016) and Tree-LSTM (Niepert
t al., 2016). The other one splits AST according to code frag-
ents and is known as ASTNN (Zhang et al., 2019). Moreover,
ode2vec (Alon et al., 2019) adopts paths in AST to represent
he source code and learns the features contained in the paths
hrough a network based on attention mechanisms. Similarly,
ode2seq (Alon et al., 2018a) uses the same paths as code2vec

Z. Zhao, B. Yang, G. Li et al. The Journal of Systems & Software 184 (2022) 111108

b
2

T
A
A
F
d
o

r
l
D
t
e
t
g
3
2

F
P
s
2
e
p
d
m
t
o
P
b
2
t
w
(
w
f
m
2
f
w
a

F
e
p
n
p
a
f
c
w
c
a
e
P

F
e
o
f
r
F

ut extracts the features by the seq2seq model (Sutskever et al.,
014).
For the settings of AST-based approaches, the AST used in

reeLSTM, TBCNN and ASTNN is generated by Clang, but the
ST paths used by code2vec and code2seq are generated by
STMiner.7 For code2vec, the embedding dimension is set to 400;
or code2seq, the embedding dimension is set to 128 and the
ecoder dimension is set to 320; The hidden dimension of the
ther methods is set to 200.
Graph-based approaches Some recent studies focused on rep-

esenting a program as a graph and adopting a graph-based
earning method to extract dependency features from the graph.
GCNN chooses CFG as the source code model and obtains fea-
ures with GCN (Phan et al., 2018). ContextGraph (CtxG) inserts
xtra edges (e.g., dataflow edges) into the original AST, and ex-
racts the features with GGNN (Li et al., 2015). For the settings of
raph-based approaches, the number of steps of GGNN is set to
, and the hidden size of all graph-based approaches was set to
00.

or RQ2. We evaluated the performance of MFGNN on Within-
roject Defect Prediction (WPDP) task. According to previous
tudies on defect prediction task (Wang et al., 2016; Dam et al.,
019), we decided to use the same strategy, i.e., training by the
arlier version and predicting on the later version. We com-
ared MFGNN with several typical WPDP methods that can be
ivided into two types according to their adopted source code
odels. Some of defect prediction technologies used the fea-

ures of the PROMISE with traditional machine learning meth-
ds (Menzies et al., 2007, 2010), including Adaboost, Multi-Layer
erception (MLP) and Random Forest (RF). The others utilize AST-
ased features, and representative methods (e.g., DBNWang et al.,
016 and TreeLSTM Dam et al., 2019). Specifically, DBN obtained
he semantic features from AST. We classified these features
ith three classifiers: Naive-Bayes (DBNNB), Logistic Regression
DBNLR) and Decision Tree (DBNDT). As for TreeLSTM, after the AST
as parsed by JavaParser,8 it would take the entire AST as input

or prediction. Additionally, we chose another two well-known
ethods: DTL-DP (Chen et al., 2020) and BugContext (Li et al.,
019). The former one visualized the source code file (or binary
ile) as an image, and obtained the defect features with AlexNet,
hile the later one acquired contextual dependencies from CFG
nd DFG, then introduced them into path-based AST features.

or RQ3. We conducted Cross-Project Defect Prediction (CPDP)
xperiments to show the performance of MFGNN. Following the
revious studies (Wang et al., 2016; Dam et al., 2019), we orga-
ized ten groups of experiments, trained models on the source
roject and predicted on the target project. For the target project,
ccording to transfer learning methods (Nam et al., 2013), we
irst randomly selected 30% of the data to fine-tune a LR-based
lassifier and then predicted the rest 70%. Except for DBN, which
as replaced by its CPDP-variant: DBN-CP (Wang et al., 2016), we
hose the same set of baseline methods as RQ2. Additionally, we
dded two transfer learning-based methods, namely TCA+ (Nam
t al., 2013) and TNB (Maying et al., 2012), which take the
ROMISE feature as same as the machine learning methods.

or RQ4. We conducted Functional Code-Clone Detection (CCD)
xperiments to demonstrate the distinguishability of semantics
btained by MFGNN. Let the features of the two source code
iles within a pair that are obtained from MFGNN be v1 and v2,
espectively. The difference can be defined as d = |v1 − v2|.
inally, we use a LR-based classifier (i.e., y = sigmoid(Wod +

7 https://github.com/JetBrains-Research/astminer.
8 https://javaparser.org.
7

bo)) to determine whether the code pairs are similar based on
the vector d. We compared the performance of MFGNN with
several state-of-the-art models that are widely used on CCD
task, including RAE+ (Ferrante et al., 1987), Deckard (Jiang et al.,
2007), CDLH (Wei and Li, 2017), ASTNN (Zhang et al., 2019),
DeepSim (Zhao and Huang, 2018), and FCDetect (Fang et al.,
2020).

For RQ5. We carried out some ablation studies. Our approach
can be divided into two parts, a source code model based on
ECFG and a learning model with the AGN4D layer. Firstly, we
explored the impact of different choices in the design of our
source code model, which has four options: (1) representing basic
blocks with AST (A) or BoW features (B); (2) including control
flow edges (C) or not; (3) including dataflow edges (D) or not; and
(4) embedding the source code model with multi-typed edge (M)
or with single-typed edge (S). We have designed four variants
based on the combination of different options.

• AST+CFG+Single: The main body of this model is CFG with
no distinction between control flow types, and its basic
blocks are represented using ASTs.

• AST+DFG+Single: The main body of this model is DFG, with
only one type of flow, and its basic blocks are represented
using ASTs.

• AST+CFG+Multi: The main body of this model is a CFG that
distinguishes between different control flows, and its basic
blocks are represented using ASTs.

• BoW+CFG+DFG+Multi: The main body of this model is a
CFG that contains the dataflows and distinguishes between
different types of flows. Its basic blocks are represented
using BoW.

Secondly, we explored the impact of different graph learning
methods. We replaced the AGN4D layer with graph convolution
network (GCN) and gated-graph neural network (GGNN), respec-
tively. Additionally, we compared across the different options in
AGN4D, i.e., summation and concatenation, to synthesize graph
features (see Eq. (2)) on the same source code model.

4.3.3. Metrics
For RQ1 and RQ5, we chose the accuracy and macro-F1 (Liu

et al., 2009) to evaluate the prediction result on test sets. As-
suming a task has K classes, the accuracy is defined as follow:

accuracy =

∑K
i=1 TPi
N

, (5)

where TPi refers to true positive of class i, and N is the total
number of samples.

For a binary classification task, the F1-score (F1) is defined as
follow:

F1-score =
2 ∗ precision ∗ recall
precision + recall

(6)

, where precision =
TP

TP+FP and recall = TP
TP+FN , TP denotes the true

positive, FP represents the false positive, and FN refers to false
negative.

A multi-label classification task can be considered as several
binary classification tasks on different labels. Based on that, as-
suming the task has K classes, the macro-F1 can be defined as
follow:

Macro-F1 =
1
K

K∑
i=1

F1-scorei. (7)

For RQ2 and RQ3, in addition to the F1 on the buggy class, we
also used the metric AUC (Area Under the receiver operating char-
acteristics Curve) (Dam et al., 2019) to evaluate the performance

Z. Zhao, B. Yang, G. Li et al. The Journal of Systems & Software 184 (2022) 111108

o
a
t
h

(

f defect prediction. Specifically, AUC refers to the probability of
classifier ranking a randomly selected positive sample higher

han a randomly selected negative sample. Intuitively speaking, a
igher value of AUC implies a better performance.
For RQ4, following the evaluation metrics of previous works

Zhang et al., 2019; Fang et al., 2020), we choose precision (P),
recall (R) and F1 to measure the performance of the selected
models on CCD task.

5. Results

In this section, we show the results of the experiments, and
compare the performance of different methods.

5.1. Answer to RQ1

Table 3 illustrates the results related to RQ1, and the best per-
formance are highlighted in bold. In column 2, we list the size of
the corresponding model except for the SVM-based approaches,
whose size is neglectable. According to these experimental re-
sults, we have the following insights:

The dataset does consist of source code with a minimal
textual difference. As we can see, SVM-based methods did not
play well in our experiments, which is reflected by their cor-
responding F1 values. This indicates that the source codes with
different labels in our dataset cannot be effectively distinguished
by textual features. In other words, it proves that the textual
differences among the source codes in out dataset are too small
to be distinguished effectively.

Compared to AST-based approaches, MFGNN achieves a bet-
ter performance with fewer parameters. Compared to the best
method, i.e., TreeLSTM, among AST-based approaches, MFGNN
reduces the model parameters by up to 50%, while achieving
4.0% and 6.8% improvements on accuracy and F1, respectively.
Additionally, we can observe that both of code2vec and code2seq
did not perform well. This is because both of them model the
source code by sampling the path of the AST, which can only
capture potential connections between code tokens (Jiang et al.,
2019). Program classification task, however, requires the identifi-
cation of the actual control flow and dataflow information of the
program execution, which cannot be achieved by their models.
On the contrary, our source code model can reflect the actual ex-
ecution path of the program with contextual information, which
can be better captured by the neural network.

MFGNN achieves a significant performance improvement
while adding a limited number of parameters compared with
the graph-based approaches. Compared to the best graph-based
approach, DGCNN, MFGNN only increases the number of param-
eters by 4 times, but achieves 5% and 8.1% improvement on
accuracy and F1, respectively. Similarly, compared with DGCNN,
which has the same scale of parameters as MFGNN, MFGNN
achieves 4.8% and 8.4% improvement on accuracy and F1, respec-
tively. This result illustrates that the performance of MFGNN has
little correlation with its number of parameters. The main dif-
ference between MFGNN and traditional graph-based methods is
two-fold. On one hand, the integration of multiple flow informa-
tion in the source code model clearly expresses the dependency
features of the program well. On the other hand, the attention
mechanism allows MFGNN to dynamically adjust the weights of
different types of flows, resulting in a better mining of the flow
features.
8

5.2. Answer to RQ2

Table 4 shows the performance of different approaches on
the within-project defect prediction (WPDP) task, and the best
performances are highlighted in bold. Due to the limitations of
Soot (e.g., throw exceptions on some data items), our dataset lost
a large number of entries in some projects, which resulted in
the distribution of the dataset we actually used differs from the
previous study (Wang et al., 2016). To ensure the fairness of the
comparison, we re-implemented the DBN methods and TreeLSTM
mentioned in Dam et al. (2019). We selected multiple groups of
parameters randomly, ran all methods multiple times and kept
the best result.

Compared with the state-of-art method, namely TreeLSTM,
MFGNN achieved 1.6% and 4.0% improvements on F1 and AUC,
respectively. Moreover, MFGNN was 5% and 29.6% higher in F1
and AUC, respectively, than DTLDP. Specifically, higher AUC often
means that the model has more confidence in the prediction re-
sults, and the main difference between MFGNN and these meth-
ods is the use of ECFG on the source code model allows MFGNN
to capture contextual dependencies.

Compared to the BugContext method, MFGNN improved 7.3%
and 18.7% in F1 and AUC, respectively. We think such a significant
improvement can be attributed to their structural difference,
which can be divided into three-fold. First, the representation of
basic blocks. According to the open-source implementation of the
BugContext, it only embeds line numbers into basic blocks, while
MFGNN uses AST to represent those basic blocks. Second, the pro-
cess of learning AST features. BugContext learns tree features by
sampling the paths of the tree, while TBCNN is adopted to learn
the features by MFGNN. Third, the process of learning graph.
MFGNN uses AGN4D to capture the dependency features in the
graph, while BugContext uses node2vec to learn the information
in the PDG. The biggest advantage of AGN4D over node2vec is the
introduction of an attention mechanism, which allows different
types of dependency features to be fused. In conclusion, the
hybrid features obtained by MFGNN could perform better on
WPDP task.

5.3. Answer to RQ3

The cross-project defect prediction (CPDP) task mentioned in
RQ3 mainly evaluates whether the contextual features learnt by
the model can be applied to different projects. To answer this
question, we compared our proposed method, MFGNN, with sev-
eral typical CPDP methods, and the results are shown in Table 5.
The best performance among all methods are marked in bold.
Depending on the type of input data, we can further divide the
performance into two types: the best performance among metric-
based methods is marked with underline and among source code
model-based methods is marked in lightgray .

Among all methods, MFGNN achieved the highest overall F1
and AUC. Compare to the best metric-based methods, MFGNN
outperformed 6.3% and 1.9% in F1 and AUC, respectively. Compare
to other source code model-based methods, MFGNN achieved
the highest F1 and AUC in most of the tasks. Interestingly, the
BugContext does not perform as well as its result on the WPDP
task (see Section 5.2). Compared with BugContext, the F1 and AUC
of MFGNN were improved by up to 27.6% and 15.8%, respectively.
We think the reason of improvement lies behind their difference
of using context-dependent information, which could be divided
into two-fold. On one side, BugContext uses dependency features
to assist AST features, while MFGNN does the opposite. Learning
program context-dependent features is critical for CPDP task, thus
such a design difference can lead to a discrepancy in performance.
On the other side, BugContext extracts features from CFG and

Z. Zhao, B. Yang, G. Li et al. The Journal of Systems & Software 184 (2022) 111108

T
R

m
t

5

r
M
h
p
e
d
t
C
A
j
T
M
t

M
a
t
s
M
n

able 3
esults on program classification task, the numbers in parentheses are the parameter sizes of methods.
Groups Methods SUB MNMX FLOW SUM 1062C 721C 731C 742C 822C Avg

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

SVM SVM&TF–IDF 34.7 12.9 48.0 16.2 56.6 18.1 38.4 13.9 51.0 13.6 38.7 11.2 42.9 12.0 60.0 15.0 56.2 14.4 47.4 14.1
SVM&BoW 54.5 41.5 68.6 52.5 80.0 60.8 59.9 52.6 55.7 21.5 42.6 22.6 55.4 33.1 66.9 26.2 56.8 16.6 60.0 36.4

AST

TBCNN (0.5M) 67.2 65.2 74.6 69.2 75.3 66.0 63.8 62.4 63.0 39.9 53.7 47.1 65.6 52.9 66.9 38.8 58.9 48.9 65.4 54.5
TreeLSTM (4.0M) 66.1 64.1 76.0 69.5 76.8 68.4 66.3 65.9 66.9 47.7 56.0 50.6 69.1 53.1 70.0 41.2 60.7 50.2 67.5 56.7
ASTNN (0.9M) 61.4 58.9 70.3 63.1 74.3 62.4 62.7 62.4 63.6 46.6 49.9 44.3 61.2 50.0 64.6 32.6 55.0 42.3 62.6 51.4
code2vec (173M) 29.5 24.7 36.6 25.7 29.7 21.1 31.4 24.5 41.2 18.4 28.9 18.5 28.1 18.2 49.2 18.0 30.7 14.5 33.9 20.4
code2seq (61M) 35.9 16.9 50.4 16.9 51.7 30.0 31.9 21.3 51.4 13.6 36.0 15.1 43.0 13.9 52.3 17.3 56.5 14.5 45.5 17.7

Graph
DGCNN (0.4M) 64.8 64.5 74.6 67.7 83.8 70.9 69.1 67.4 64.3 42.8 54.2 49.6 61.4 47.0 70.3 44.1 56.2 44.5 66.5 55.4
DGCNN (2.4M) 64.4 62.6 74.2 66.5 82.7 72.0 69.1 67.9 64.8 42.1 55.3 49.9 61.7 48.5 72.6 43.5 55.9 42.5 66.7 55.1
CtxG (4.9M) 64.8 62.0 74.0 68.0 74.9 63.9 64.9 64.6 59.1 42.0 51.1 45.3 59.0 47.8 65.0 36.8 56.4 43.3 63.2 52.6

MFGNN (2.1M) 74.5 74.7 83.1 81.4 81.8 71.0 72.9 73.5 68.0 53.2 59.5 54.5 70.0 61.0 73.8 51.6 59.9 50.3 71.5 63.5
Table 4
The result of WPDP experiment on PROMISE.
Methods Adaboost MLP RF DBNNB DBNLR DBNDT Tree-LSTM DTLDP BugContext MFGNN

Project Tr T F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

ant 1.5 1.6 37.8 68.4 32.0 72.5 36.2 70.5 4.3 81.5 40.7 80.7 4.3 51.1 29.7 49.7 45.3 22.8 31.1 44.4 33.1 72.5
1.6 1.7 52.2 69.4 51.4 71.6 49.1 74.1 53.2 69.3 51.7 79.0 22.8 50.6 44.2 60.8 35.5 50.0 45.1 44.7 53.7 75.5

camel 1.2 1.4 40.2 70.3 39.8 68.6 47.2 75.9 12.9 53.1 16.5 40.4 9.3 51.9 53.1 82.7 32.9 34.1 36.2 52.6 54.3 83.6
1.4 1.6 40.2 70.9 30.7 68.9 45.9 70.1 13.7 58.4 32.0 58.4 8.0 44.2 55.9 79.7 34.7 44.2 27.8 50.3 56.8 84.0

ivy 1.4 2.0 14.3 66.9 14.8 67.8 23.1 69.4 47.6 61.5 27.3 57.9 26.7 57.7 15.9 45.8 21.1 18.5 31.9 44.5 22.9 60.2

jedit 4.0 4.1 57.0 80.7 54.3 80.4 54.5 79.9 41.3 45.6 41.6 50.0 0.0 50.4 62.0 78.8 23.8 35.7 38.5 63.1 65.0 84.4

lucene 2.0 2.2 58.5 63.7 59.9 63.4 59.4 65.7 32.7 65.3 36.6 65.4 35.8 53.3 60.9 59.9 58.9 48.0 43.0 58.4 64.6 64.0
2.2 2.4 64.8 56.6 68.4 57.5 64.8 62.1 25.7 47.3 37.4 73.3 14.2 71.6 68.1 59.1 68.8 40.3 68.0 60.3 68.8 63.4

log4j 1.0 1.1 66.7 78.0 73.3 82.5 75.0 84.2 75.0 88.5 60.5 90.2 72.3 64.8 73.3 75.8 24.0 46.9 75.5 66.7 73.3 77.0

poi 1.5 2.5 77.3 72.6 78.4 72.1 73.3 74.3 8.5 45.8 8.4 65.4 13.4 40.9 81.6 75.8 81.9 59.5 79.7 62.1 83.1 78.4
2.5 3.0 54.6 50.2 68.4 52.2 58.7 55.6 28.0 76.4 27.0 78.6 8.9 78.7 73.9 69.5 77.7 71.9 65.2 58.3 73.3 69.2

synapse 1.0 1.1 28.9 64.6 15.0 61.1 14.7 57.9 47.9 64.4 43.0 66.3 48.9 60.5 28.2 43.2 41.0 51.7 18.8 40.1 30.4 61.1
1.1 1.2 40.3 61.2 44.1 64.4 40.0 66.8 41.5 69.1 41.5 50.1 35.9 66.5 50.3 57.8 54.4 43.7 42.4 55.0 50.3 65.6

xalan 2.4 2.5 32.9 62.1 21.9 59.7 27.9 59.1 19.1 51.1 30.8 58.2 10.6 55.4 34.5 63.9 50.4 43.8 17.4 51.9 33.1 58.7

xerces 1.2 1.3 29.6 62.6 24.2 60.3 25.7 57.9 24.1 53.5 32.4 64.0 33.3 64.5 29.4 60.7 14.8 29.4 9.4 51.5 30.9 74.2
Avg 46.4 66.5 45.1 66.9 46.4 68.2 31.7 62.1 35.2 65.2 23.0 57.5 50.7 64.2 44.3 42.7 42.0 53.6 52.9 71.5
DFG separately, while MFGNN combines them into the ECFG and
extracts features uniformly by AGN4D.

In conclusion, the contextual features obtained by MFGNN are
ore generalized and are able to result in better performance on

he CPDP task.

.4. Answer to RQ4

Table 6 illustrates the results related to RQ4, and the best
esults are highlighted in bold. Compared with other methods,
FGNN achieved the highest recall and F1, as well as a relative
igh precision. Interestingly, we could observe that FCDetect
lays well, which apply call graph as the source code model. How-
ver, we argue that MFGNN can capture the program context-
ependency features more effectively. The main difference be-
ween them is the graph learning mechanisms they adopted.
ompared to the Graph2Vec adopted by FCDetect, MFGNN uses
GN4D based on the attention mechanism, and thus could ad-
ust the weights of different types of dependency information.
herefore, with the help of more context-dependency features,
FGNN could identify program variants more effectively, leading

o higher recall and F1 scores.
Fig. 4 shows the absolute distances of features derived from

FGNN for the data in the test set. We can observe that there is
clear demarcation line between the red and blue dots. This illus-
rates the features obtained by MFGNN can effectively distinguish
ource codes under the functional code-clone task. In conclusion,
FGNN can improve the performance of distinguishing between
on-cloned and cloned source code pairs.
9

Fig. 4. t-SNE mapping of the absolute distances of the test set’s pairs’ features.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

5.5. Answer to RQ5

To answer this question, we have adjusted the default settings
in our original methodology and compared their performance on
the program classification task. The results are shown in Table 7,

Z. Zhao, B. Yang, G. Li et al. The Journal of Systems & Software 184 (2022) 111108

c
w
c
s
s
i
e
H
t

p
a

Table 5
The result of CPDP experiment on PROMISE.
Source Target Adaboost MLP RF TCA+ TNB DBN-CP DTLDP BugContext MFGNN

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

ant-1.6 camel-1.4 23.9 62.9 37.2 63.3 26.8 65.9 28.0 52.9 40.0 67.5 31.9 60.7 22.8 42.0 22.6 42.5 36.3 65.3

jedit-4.1 camel-1.4 25.7 60.4 26.5 49.4 16.7 59.7 29.0 51.2 32.0 64.2 23.4 61.1 31.3 54.9 11.7 51.6 39.8 67.4

camel-1.4 ant-1.6 54.3 69.4 32.8 38.1 38.2 70.1 25.0 42.1 59.0 79.0 56.1 74.3 47.8 18.6 22.2 66.9 50.3 71.4

poi-3.0 ant-1.6 48.8 68.7 62.7 80.3 55.0 73.8 28.0 46.8 53.0 73.6 48.2 63.3 44.8 26.5 51.0 68.2 56.9 75.2

camel-1.4 jedit-4.1 34.8 57.7 13.2 30.2 37.6 71.1 50.0 63.8 53.0 76.2 32.3 59.1 38.4 36.7 45.2 70.2 41.5 64.2

log4j-1.1 jedit-4.1 57.7 78.6 56.1 72.1 56.6 78.5 18.0 35.7 62.0 79.4 48.4 67.4 39.9 62.0 38.0 49.8 57.8 78.8

jedit-4.1 log4j-1.1 26.3 63.4 0.0 13.2 12.9 84.9 61.0 61.8 71.0 84.3 37.8 61.1 59.6 49.1 31.6 24.2 57.1 67.9

lucene-2.2 log4j-1.1 64.1 74.1 60.4 92.0 70.8 82.3 52.0 60.9 63.0 79.7 45.2 53.8 46.5 41.7 53.2 62.4 54.5 63.1

lucene-2.2 xalan-2.5 63.6 57.4 68.5 60.9 61.7 61.1 58.0 54.8 45.0 53.0 57.2 61.0 37.8 54.4 43.2 48.9 67.4 66.6

xerces-1.3 xalan-2.5 38.4 50.7 62.8 59.0 21.8 56.0 59.0 53.9 57.0 53.5 26.8 46.9 64.9 40.2 23.6 55.7 63.5 61.1

xalan-2.5 lucene-2.2 46.5 54.8 74.7 64.0 51.6 59.7 64.0 63.1 54.0 57.9 56.4 60.5 74.5 50.7 65.4 54.8 64.3 56.6

log4j-1.1 lucene-2.2 49.3 62.3 37.8 57.9 55.0 60.8 60.0 55.6 54.0 63.1 52.7 55.8 76.4 56.1 62.9 50.0 70.2 63.1

xalan-2.5 xerces-1.3 35.4 55.9 0.0 37.8 39.3 64.7 23.0 39.5 31.0 49.6 32.4 57.5 15.7 43.4 34.4 62.4 50.0 74.3

ivy-2.0 xerces-1.3 12.5 64.2 0.0 33.8 20.0 52.7 45.0 66.7 37.0 60.3 36.6 59.6 29.4 51.3 32.1 53.2 47.8 71.7

xerces-1.3 ivy-2.0 34.6 71.1 39.5 79.7 35.5 70.1 30.0 68.9 34.0 77.2 30.5 57.2 11.3 54.5 25.3 67.8 37.4 79.5

synapse-1.2 ivy-2.0 33.3 74.3 51.1 78.7 34.7 74.5 24.0 62.5 38.0 82.1 29.6 62.0 22.0 18.2 40.7 71.9 39.0 78.9

ivy-1.4 synapse-1.1 9.4 66.1 20.9 35.6 3.4 63.2 45.0 61.4 51.0 70.0 9.7 51.9 15.7 54.1 9.4 37.4 42.7 57.8

poi-2.5 synapse-1.1 28.3 48.1 34.9 54.2 46.5 62.9 43.0 62.7 5.0 44.4 49.0 63.4 35.2 30.0 37.0 56.4 48.5 68.6

ivy-2.0 synapse-1.2 39.7 69.7 34.5 49.7 24.2 68.9 52.0 62.3 57.0 70.7 32.4 53.6 45.7 39.8 17.5 50.2 62.0 73.3

poi-3.0 synapse-1.2 56.3 69.9 55.8 66.0 53.8 56.2 56.0 67.6 43.0 62.8 49.5 62.3 29.4 34.0 49.8 55.2 65.7 75.1

synapse-1.2 poi-3.0 57.7 74.1 51.7 59.3 27.2 70.0 72.0 61.6 71.0 75.6 48.5 59.5 73.9 56.5 66.2 56.7 81.4 82.2

ant-1.6 poi-3.0 47.0 68.5 47.2 53.2 37.8 70.2 38.0 33.9 65.0 79.7 43.5 66.0 33.3 56.4 44.7 41.6 81.1 84.3

Avg 40.3 64.6 39.5 55.8 37.6 67.2 43.6 55.9 48.9 68.4 39.9 59.9 40.7 44.1 37.6 54.5 55.2 70.3
Table 6
The results of ccd task on OJClone.
Methods RAE+ Deckard CDLH ASTNN DeepSim FCDetect MFGNN

P 52.5 99 47 98.9 70 97 96.7
R 68.3 5 73 92.7 83 95 96.3
F1 59.4 10 57 95.5 76 96 96.5

in which the default settings are highlighted in bold. We can
obtain the following insights:

Sensitivity to the control flow and dataflow differs from
hallenges. Using only DFG as the source code model (i.e., A+D+S)
orks better on some challenges, e.g., SUB and SUM. This is be-
ause there are much more operators than branches within these
ource code (see Table 1). In other words, these challenges have
imple control flows, but complex computational logic, which
s related to data flow heavily. Thus, compare to control flow
dges, data flow edges play a more critical role on the test results.
owever, in general, CFG only (i.e., A+C+S) could perform better
han adopting only DFG.

Introducing different types of edges in CFG may lead to
oorer performance. Introducing different types of edges plays
positive role on some challenges, including SUB, 721C, 731C,

742C, and 822C. However, on other challenges, MFGNN performs
better when the source code model is untyped (e.g., A+C+S).
This is because these challenges require fewer branches than
the others (see Table 1). The imbalanced distribution of types
lead to ineffective optimization of the model on different types.
Therefore, the uneven distribution of the number of different
edge types prevents MFGNN from effectively fusing the features
of different types of flows.
10
AST is a better choice for node representation in our ex-
periment settings. The results show that using AST as a node
representation improved the model’s performance significantly.
Even when the other settings in the approach were removed
(e.g., A+C+S which removed data flow edges and edge types, or
A+D+S which removed control flow edges), the approach still
performed better than B+C+D+M, which represents node by Bag-
of-Words (BoW) model instead of AST. Compared to the model in
BoW, i.e., B+C+D+M, our source code model (A+C+D+M) resulted
in 7.7% and 9.8% improvement on accuracy and F1, respectively.
Because the node representation is the only independent variable
here, we can conclude that AST is a better node representation
option for our task. Compared to AST, BoW lacks both the lexical
order and syntactic structures, which are essential for a proper
representation of basic blocks.

AGN4D is the best choice among the three GNNs. To examine
the effectiveness of AGN4D, we altered it into two other common
GNNs, i.e., GCN and GGNN, respectively, into our approach for a
comparison study. Table 7 shows that AGN4D outperformed the
other two GNNs, with an average of 2.7% and 5.3% higher accuracy
and F1, respectively.

Summation is a better choice than concatenation in con-
textual feature embedding stage. From the results, the use of
summation as a graph feature synthesis method (i.e., the last
formula of (2)) delivered better performance. This is because
concatenation doubles AGN4D’s hidden dimension layer by layer,
increasing the number of model parameters and resulting in
model overfitting issue.

5.6. Threats to validity

In conducting our experiments, the following factors existed
that might affect the validity of the our study.

Z. Zhao, B. Yang, G. Li et al. The Journal of Systems & Software 184 (2022) 111108

T
R

i
A
h
o
e

able 7
esults of ablation studies.
Different settings SUB MNMX FLOW SUM 1062C 721C 731C 742C 822C Avg

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

A+C+S 70.6 70.6 80.9 79.5 82.6 72.2 71.4 72.2 66.8 57.0 59.2 53.5 66.4 56.9 74.6 48.6 60.2 50.8 70.3 62.4
A+D+S 70.8 71.4 80.9 76.7 78.7 69.3 71.5 71.8 66.2 43.5 57.5 53.7 63.8 56.3 72.2 45.0 56.3 49.6 68.7 59.7
A+C+M 70.6 72.2 80.7 77.6 82.1 70.7 70.8 70.8 64.9 48.8 59.7 54.2 66.9 56.6 75.5 52.9 59.4 52.0 70.1 61.8
B+C+D+M 69.7 68.3 75.4 68.8 72.8 63.5 64.6 64.0 57.1 38.8 49.0 44.2 61.6 51.7 68.0 40.3 55.7 43.9 63.8 53.7
A+C+D+M 74.5 74.7 83.1 81.4 81.8 71.0 72.9 73.5 68.0 53.2 59.5 54.5 70.0 61.0 73.8 51.6 59.9 50.3 71.5 63.5
concatenation 66.9 63.8 79.5 74.6 80.6 69.4 70.6 70.1 65.9 51.0 55.8 50.4 66.8 54.0 69.8 43.4 60.3 47.0 68.5 58.2
summation 74.5 74.7 83.1 81.4 81.8 71.0 72.9 73.5 68.0 53.2 59.5 54.5 70.0 61.0 73.8 51.6 59.9 50.3 71.5 63.5
GCN 72.3 70.4 80.4 77.2 81.3 71.8 70.7 70.8 64.6 43.5 56.6 52.2 64.3 53.2 69.7 39.9 59.8 48.8 68.9 58.6
GGNN 74.7 73.9 83.2 81.7 82.8 72.1 71.5 71.2 62.7 41.6 53.7 48.1 63.6 50.6 69.5 42.7 56.7 38.0 68.7 57.8
AGN4D 74.5 74.7 83.1 81.4 81.8 71.0 72.9 73.5 68.0 53.2 59.5 54.5 70.0 61.0 73.8 51.6 59.9 50.3 71.5 63.5
Implementation of baselines. The internal threat to validity
s concerned with our implementation. We reproduced TBCNN,
STNN, CtxG, DBN, TCA+, TreeLSTM, BugContext. Although we
ave implemented these baseline methods as described in the
riginal studies, we cannot guarantee that these implementations
xactly match the original ones.
Applying baselines on our dataset. In carrying out the task,

we found that many of the baseline methods were designed
specifically for a particular task, for example code2vec’s goal
was to perform function name generation and CtxG’s goal was
to perform var-misuse detection. Although we compared these
methods as baselines, we cannot guarantee that these we can
meet the conditions for these representations of the model to
work well.

Missing projects in PROMISE dataset. Our RQ2 and RQ3
experiments are based on the PROMISE dataset, a very early
dataset in which some versions of projects recorded are not
available on the web. We were only able to conduct experiments
using projects that could be found and could not directly use the
original experimental data from the DBN (Wang et al., 2016) and
TreeLSTM (Dam et al., 2019) studies.

CFG differences in different languages. For C/C++, we use
Clang to get the CFG, which converts the program to LLVM IR, a
kind of three-address code, and then builds the CFG on top of that.
For Java, we use Soot to get the CFG. Soot will first convert the
program into Jimple, a kind of SSA, and then build the CFG on top
of that. Because of the difference in the intermediate languages
used, the final CFG may not be exactly the same for the same
statements in both languages.

Conduct experiments on more tasks and more practical
datasets. To evaluate the feasibility and effectiveness of MFGNN,
we have conducted several tasks (e.g., program classification and
defect prediction) on the datasets consisting of source codes from
OJ and open source projects. Though the variety of evaluated tasks
and the sources of datasets were limited, we argue that MFGNN
is robust enough even on large-scale real-world industrial code to
perform other types of tasks, which, however, requires follow-up
studies in the future.

6. Related works

6.1. Source code representation in deep learning

While performing program analysis with deep learning, the
representation model of source code is a fundamental prob-
lem, which could be roughly divided into: AST-based and CFG-
based. Specifically, as for the AST-based source code model, some
studies adopted the AST that is generated from the program
directly (White et al., 2016; Mou et al., 2016; Dam et al., 2019) or
with some modifications (e.g., inserting additional edges between
nodes Allamanis et al., 2017). Moreover, some works (Zhang
11
et al., 2019; Alon et al., 2019, 2018a) just extracted part of the
generated AST to conduct the following analysis. For examples,
Alon et al. (2019, 2018a) chose the collection of AST’s token-to-
token path as the source code model, and learned the features by
attention-based models. Unlike these models, we chose to split
the AST into subtrees based on basic blocks. Though it would
slightly broke the integrity of the AST, the explicit contextual
dependencies in the CFG could reassemble parts of the AST,
making dependencies more salient and easier to learn.

As for the CFG-based source code model, there are two factors
that significantly affect the following program analysis with deep
learning. One is the way of representing of basic blocks; the
other is the role of the graph. To be specific, several works have
tried different way to basic blocks in deep learning, e.g., assembly
instruction (Phan et al., 2018), Bag-of-Words model (Fang et al.,
2020; Wang et al., 2020) and line number (Li et al., 2019). As for
the graph, it can be utilized as a leading role (Phan et al., 2018;
Fang et al., 2020; Wang et al., 2020) or an auxiliary role (Li et al.,
2019) during the analysis. For example, Wang et al. (2020) used
graph as a leading role and represents basic blocks with Bag-of-
Words model composed of AST’s grammatical nodes. Our model
similarly adopted graph as a leading role, but represented basic
blocks with the corresponding subtree of AST. We retained the
structure of AST, which helped us better represent the context-
independent grammatical differences than other models.

6.2. Program classification

Program classification, i.e., distinguishing and classifying pro-
grams by some features from various aspects, is one of the basic
software engineering tasks. For example, as one of the applica-
tions, functional code clone detection (Zhang et al., 2019; Fang
et al., 2020; Yu et al., 2019) is to determine whether two code
snippets implement the same functionality. It is achieved by
classifying the functional features of the given program. Except
from functional features (Mou et al., 2016; Zhang et al., 2019),
language features (Ugurel et al., 2002), defect features (Dam
et al., 2019; Wang et al., 2016; Phan et al., 2018) and structure
features (Zanoni et al., 2015) are also widely adopted by program
classification tasks. In this paper, we decided to apply defect
features on classifying program test results. Though Phan et al.
(2018) have done this task before, the size of dataset and code
complexity were relatively limited compared to ours, which were
collected and constructed by crawlers and huge manual efforts.

6.3. Software defect prediction

Software defect prediction is a challenging task that has been
researched extensively. Prior to the rise of deep learning, re-
searchers have adopted machine learning to achieve such a goal
(Nam et al., 2013; Yang et al., 2015; Walden et al., 2014; Xia et al.,

Z. Zhao, B. Yang, G. Li et al. The Journal of Systems & Software 184 (2022) 111108

2
n
a
t
F
p
m
n
s
u
2
p
p
s
a
c
m
o
c

7

b
O
e
M
u
s
s
o
m
d
i
h
A
w
a

D

c
t

A

m
r
u
e
6
c
R

R

A

A

A

016; Breiman, 2001; Briand et al., 2002; Khoshgoftaar and Lan-
ing, 1995; Khoshgoftaar et al., 2000; Xing et al., 2005; Munson
nd Khoshgoftaar, 1992). However, these techniques require fea-
ure engineering that is normally time- and resource-consuming.
or example, Xing et al. (2005) proposed a SVM-based defect
redicting methods, which depends on both software change
etrics and software complexity metrics. Deep learning tech-
iques eliminated the process of feature engineering, and re-
earchers began focusing on improving prediction performance
sing suitable source code models (Yang et al., 2015; Wang et al.,
016; Chen et al., 2020; Dam et al., 2019). Existing works have
ointed out that the source code model needs contextual de-
endencies (Li et al., 2017) and should be able to distinguish
ubtle changes (Wang et al., 2016). Both of them were taken into
ccount in our method. Specifically, the contextual dependencies
omes from the ECFG; and the subtle changes, i.e., subtle gram-
atical differences, are represented by the structural differences
f the AST. To the best of our knowledge, no other existing source
ode models have achieved both of these goals.

. Conclusion

In this paper, we have proposed a new source code model
ased on ECFG and an attention-based model, namely MFGNN.
ur source code model restricts the order in which MFGNN
xtracts features, and makes it more efficient and effective for
FGNN to obtain program features. Moreover, we have eval-
ated MFGNN on three practical tasks: program classification,
oftware defect prediction and code clone detection. The results
howed that MFGNN significantly outperformed baseline meth-
ds. For example, compared with the well-known source code
odel code2seq (Alon et al., 2018a), the scale of parameters
ecreased more than 30-fold while the overall accuracy was
ncreased by 26.0%. Our research illustrated that the performance
eavily depended on the construction of source code model.
dditionally, we highlights a few research directions for future
ork, e.g., applying our method on more general real-life projects
nd improving the graph and MFGNN for better performance.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

We thank anonymous reviewers for their thoughtful com-
ents. Thanks to Ningyu He for proofreading the manuscript. This

esearch is supported by the National Key R&D Program of China
nder Grant No. 2020AAA0109400, the National Natural Sci-
nce Foundation of China under Grant Nos. 62072007, 61832009,
1620106007, 61502011, the Australian Research Council Dis-
overy Project (Grant No. DP210102447), and ‘‘the Fundamental
esearch Funds for the Central Universities, China’’ (BLX202003).

eferences

llamanis, M., Brockschmidt, M., Khademi, M., 2017. Learning to represent
programs with graphs. arXiv preprint arXiv:1711.00740.

lon, U., Levy, O., Yahav, E., 2018a. Code2seq: Generating sequences from
structured representations of code. CoRR abs/1808.01400, arXiv:1808.01400,
URL http://arxiv.org/abs/1808.01400.

lon, U., Zilberstein, M., Levy, O., Yahav, E., 2018b. A general path-based repre-
sentation for predicting program properties. In: Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation.
12
Alon, U., Zilberstein, M., Levy, O., Yahav, E., 2019. Code2Vec:Learning distributed
representations of code. In: Proceedings of the ACM on Programming
Languages, Vol. 3. POPL, pp. 1–29. http://dx.doi.org/10.1145/3290353, arXiv:
1803.09473.

Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32.
Briand, L.C., Melo, W.L., Wust, J., 2002. Assessing the applicability of fault-

proneness models across object-oriented software projects. IEEE Trans.
Softw. Eng. 28 (7), 706–720.

Bruna, J., Zaremba, W., Szlam, A., LeCun, Y., 2014. Spectral networks and locally
connected networks on graphs. In: 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference
Track Proceedings. URL http://arxiv.org/abs/1312.6203.

Chen, J., Hu, K., Yu, Y., Chen, Z., Xuan, Q., Liu, Y., Filkov, V., 2020. Software
Visualization and Deep Transfer Learning for Effective Software Defect
Prediction. pp. 578–589.

Cvitkovic, M., Singh, B., Anandkumar, A., 2018. Open vocabulary learning on
source code with a graph-structured cache. arXiv:1810.08305, URL http:
//arxiv.org/abs/1810.08305.

Dam, K.H., Pham, T., Ng, S.W., Tran, T., Grundy, J.C., Ghose, A.K., Kim, T.,
Kim, C.-J., 2019. Lessons learned from using a deep tree-based model for
software defect prediction in practice. In: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories. MSR, pp. 46–57.

Fang, C., Liu, Z., Shi, Y., Huang, J., Shi, Q., 2020. Functional code clone detection
with syntax and semantics fusion learning. In: ISSTA 2020 - Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis. pp. 516–527. http://dx.doi.org/10.1145/3395363.3397362.

Ferrante, J., Ottenstein, K.J., Warren, J.D., 1987. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst. 9 (3), 319–349.
http://dx.doi.org/10.1145/24039.24041.

Fout, A., Byrd, J., Shariat, B., Ben-Hur, A., 2017. Protein interface prediction using
graph convolutional networks. In: Advances in Neural Information Processing
Systems, pp. 6530–6539.

Frantzeskou, G., MacDonell, S., Stamatatos, E., Gritzalis, S., 2008. Examining
the significance of high-level programming features in source code author
classification. J. Syst. Softw. 81 (3), 447–460.

Hamaguchi, T., Oiwa, H., Shimbo, M., Matsumoto, Y., 2017. Knowledge transfer
for out-of-knowledge-base entities: A graph neural network approach. arXiv
preprint arXiv:1706.05674.

Hamilton, W., Ying, Z., Leskovec, J., 2017. Inductive representation learning on
large graphs. In: Advances in Neural Information Processing Systems, pp.
1024–1034.

Hu, X., Li, G., Xia, X., Lo, D., Jin, Z., 2018. Deep code comment generation.
In: Proceedings of the 26th Conference on Program Comprehension, pp.
200–210.

Jiang, L., Liu, H., Jiang, H., 2019. Machine learning based recommendation of
method names: How far are we. In: Proceedings - 2019 34th IEEE/ACM
International Conference on Automated Software Engineering. ASE 2019,
IEEE, pp. 602–614. http://dx.doi.org/10.1109/ASE.2019.00062.

Jiang, L., Misherghi, G., Su, Z., Glondu, S., 2007. DECKARD: scalable and accurate
tree-based detection of code clones. In: 29th International Conference on
Software Engineering. ICSE’07, pp. 96–105. http://dx.doi.org/10.1109/ICSE.
2007.30.

Khoshgoftaar, T.M., Lanning, D.L., 1995. A neural network approach for early
detection of program modules having high risk in the maintenance phase. J.
Syst. Softw. 29 (1), 85–91.

Khoshgoftaar, T.M., Yuan, X., Allen, E.B., 2000. Balancing misclassification rates
in classification-tree models of software quality. Empir. Softw. Eng. 5 (4),
313–330.

LeClair, A., Jiang, S., McMillan, C., 2019. A neural model for generating natu-
ral language summaries of program subroutines. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering. ICSE, IEEE, pp. 795–806.

Li, J., He, P., Zhu, J., Lyu, M.R., 2017. Software defect prediction via convolutional
neural network. In: 2017 IEEE International Conference on Software Quality,
Reliability and Security. QRS, pp. 318–328.

Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R., 2015. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493.

Li, Y., Wang, S., Nguyen, T.N., Nguyen, S.V., 2019. Improving bug detection
via context-based code representation learning and attention-based neural
networks. Proc. ACM Program. Lang. 3, 1–30.

Liu, Y., Loh, H.T., Sun, A., 2009. Imbalanced text classification: A term weighting
approach. Expert Syst. Appl. 36 (1), 690–701.

Maying, LuoGuangchun, Zengxue, ChenAiguo, 2012. Transfer learning for
cross-company software defect prediction. Inf. Softw. Technol.

Menzies, T., Greenwald, J., Frank, A., 2007. Data mining static code attributes to
learn defect predictors. IEEE Trans. Softw. Eng. 33, 2–13. http://dx.doi.org/
10.1109/TSE.2007.10.

Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., Bener, A.B., 2010. De-
fect prediction from static code features: current results, limitations, new
approaches. Autom. Softw. Eng. 17 (4), 375–407. http://dx.doi.org/10.1007/
s10515-010-0069-5.

Z. Zhao, B. Yang, G. Li et al. The Journal of Systems & Software 184 (2022) 111108

M

M

N

N

O

P

S

T

T

U

V

W

W

W

ou, L., Li, G., Zhang, L., Wang, T., Jin, Z., 2016. Convolutional neural networks
over tree structures for programming language processing. In: Thirtieth AAAI
Conference on Artificial Intelligence.

unson, J.C., Khoshgoftaar, T.M., 1992. The detection of fault-prone programs.
IEEE Trans. Softw. Eng. 26 (5), 423–433.

am, J., Pan, S.J., Kim, S., 2013. Transfer defect learning. In: 2013 35th
International Conference on Software Engineering. ICSE, IEEE, pp. 382–391.

iepert, M., Ahmed, M., Kutzkov, K., 2016. Learning convolutional neural net-
works for graphs. In: International Conference on Machine Learning, pp.
2014–2023.

tt, J., Atchison, A., Harnack, P., Best, N., Anderson, H., Firmani, C., Linstead, E.,
2018. Learning lexical features of programming languages from imagery
using convolutional neural networks. In: Proceedings of the 26th Conference
on Program Comprehension, pp. 336–339.

han, A., Nguyen, L., Nguyen, Y., Bui, L., 2018. DGCNN: A convolutional neural
network over large-scale labeled graphs. Neural Netw. 108, http://dx.doi.org/
10.1016/j.neunet.2018.09.001.

utskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with
neural networks. CoRR abs/1409.3215, arXiv:1409.3215, URL http://arxiv.org/
abs/1409.3215.

antithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K., 2016. An
empirical comparison of model validation techniques for defect prediction
models. IEEE Trans. Softw. Eng. 43 (1), 1–18.

ufano, M., Watson, C., Bavota, G., Di Penta, M., White, M., Poshyvanyk, D.,
2018. Deep learning similarities from different representations of source
code. In: 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories. MSR, pp. 542–553.

gurel, S., Krovetz, R., Giles, C.L., 2002. What’s the code? automatic classifica-
tion of source code archives. In: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. pp.
632–638.

eličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., 2017.
Graph attention networks. arXiv preprint arXiv:1710.10903.

alden, J., Stuckman, J., Scandariato, R., 2014. Predicting vulnerable components:
Software metrics vs text mining. In: 2014 IEEE 25th International Symposium
on Software Reliability Engineering. IEEE, pp. 23–33.

ang, Y., Gao, F., Wang, L., Wang, K., 2020. Learning semantic program em-
beddings with graph interval neural network 1 (January). arXiv:2005.09997,
URL http://arxiv.org/abs/2005.09997.

ang, S., Liu, T., Tan, L., 2016. Automatically learning semantic features for defect
prediction. In: 2016 IEEE/ACM 38th International Conference on Software
Engineering. ICSE, IEEE, pp. 297–308.
13
Wang, K., Su, Z., 2019. Learning blended, precise semantic program embeddings.
ArXiv abs/1907.02136.

Wei, H.-H., Li, M., 2017. Supervised deep features for software functional clone
detection by exploiting lexical and syntactical information in source code.
In: Proceedings of the 26th International Joint Conference on Artificial
Intelligence. In: IJCAI’17, AAAI Press, pp. 3034–3040.

White, M., Tufano, M., Vendome, C., Poshyvanyk, D., 2016. Deep learning code
fragments for code clone detection. In: 2016 31st IEEE/ACM International
Conference on Automated Software Engineering. ASE, IEEE, pp. 87–98.

Xia, X., Lo, D., Wang, X., Yang, X., 2016. Collective personalized change
classification with multiobjective search. IEEE Trans. Reliab. 65 (4),
1810–1829.

Xing, F., Guo, P., Lyu, M.R., 2005. A novel method for early software quality
prediction based on support vector machine. In: 16th IEEE International
Symposium on Software Reliability Engineering. ISSRE’05, IEEE, p. 10.

Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J., 2015. Deep learning for just-in-
time defect prediction. In: 2015 IEEE International Conference on Software
Quality, Reliability and Security. IEEE, pp. 17–26.

Yao, Z., Peddamail, J.R., Sun, H., 2019. CoaCor: code annotation for code retrieval
with reinforcement learning. In: The World Wide Web Conference, pp.
2203–2214.

Yu, H., Lam, W., Chen, L., Li, G., Xie, T., Wang, Q., 2019. Neural detection
of semantic code clones via tree-based convolution. In: 2019 IEEE/ACM
27th International Conference on Program Comprehension. ICPC, pp. 70–80.
http://dx.doi.org/10.1109/ICPC.2019.00021.

Zanoni, M., Fontana, F.A., Stella, F., 2015. On applying machine learning
techniques for design pattern detection. J. Syst. Softw. 103, 102–117.

Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu, X., 2019. A novel
neural source code representation based on abstract syntax tree. In: 2019
IEEE/ACM 41st International Conference on Software Engineering. ICSE, IEEE,
pp. 783–794.

Zhao, G., Huang, J., 2018. DeepSim: Deep learning code functional similarity.
In: Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. In: ESEC/FSE 2018, Association for Computing Machinery, New
York, NY, USA, pp. 141–151. http://dx.doi.org/10.1145/3236024.3236068.

Zhong, H., Mei, H., 2019. Learning a graph-based classifier for fault localization.
Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M., 2018.

Graph neural networks: A review of methods and applications. arXiv preprint
arXiv:1812.08434.

